Policy on Minimizing Occupational Health Hazards Associated with Nitrous Oxide

Latest Revision
2018

Purpose
The American Academy of Pediatric Dentistry (AAPD) recognizes that exposure to ambient nitrous oxide (N₂O) may be an occupational health hazard for dental personnel and encourages practitioners to take all precautions to minimize associated risks.

Methods
This policy was developed by the Clinical Affairs Committee and adopted in 1987, and was revised by the Council of Clinical Affairs. This document is a revision of the previous version, revised in 2013. The update used electronic database and hand searches of articles in the medical and dental literature using the following parameters: terms: nitrous oxide, occupational exposure, AND dentistry; fields: all; limits: within the last 10 years, English. Additionally, guidelines and recommendations from the National Institute for Occupational Safety and Health (NIOSH) were reviewed. Expert opinions and best current practices were relied upon when sufficient scientific data were not available.

Background
Effects of occupational exposure to ambient N₂O are uncertain, especially since the introduction of methods to scavenge N₂O and ventilate operatories. As of 2008, there were no definitive studies linking general health problems and reproductive difficulties among dental personnel to chronic exposure to scavenged ambient N₂O. A maximum safe level of ambient N₂O in the dental environment has not been determined.

Reduction of ambient N₂O through system maintenance, scavenging, ventilation, use of the minimal effective dose, and patient management is important to maintaining the lowest practical levels in the dental environment. Frequent and regular inspection and maintenance of the N₂O delivery system, together with the use of a scavenging system, can reduce ambient N₂O significantly. Using a well-fitted mask and an appropriate suction strength via the scavenging system will minimize leakage, reducing ambient N₂O levels.

The use of a double-mask patient delivery system also has been shown to be more effective than a single-mask system in the removal of waste nitrous oxide. The combined use of the double mask system and scavenging systems with a high evacuation flow rate have been demonstrated to decrease occupational exposure to nitrous. NIOSH has recommended that the exhaust ventilation of N₂O from the patient’s mask be maintained at an air flow rate of 45 liters per minute and vented outside the building away from fresh air intakes. However, scavenging at this rate has been shown to reduce the level of psychosedation achieved with N₂O inhalation. Where possible, outdoor air should be used for dental operatory ventilation. Supply and exhaust vents should be well separated to allow good mixing and prevent short-circuiting. Female dental staff frequently (i.e., three or more days a week) exposed to nitrous oxide have been found to have no elevated risk of spontaneous abortion in offices using appropriate scavenging systems.

Patient selection is an important consideration in reducing ambient N₂O levels. Patients who are unwilling or unable to tolerate the nasal hood and those with medical conditions (e.g., obstructive respiratory diseases, emotional disturbances, drug dependencies) that contraindicate the use of N₂O should be managed by other behavior guidance techniques. In the dental environment, patient behaviors such as talking, crying, and moving have been shown to result in significant increases in baseline ambient N₂O levels despite the use of the mask-type scavenging systems.

Utilization of titrated nitrous concentration levels in relation to procedure difficulty should be considered. Nitrous can be discontinued once adequate anesthesia is achieved, or decreased levels can be maintained during easier procedures and increased for stimulating procedures. The use of scavenging systems alone cannot lower the ambient N₂O levels to the recommended standards. Use of supplemental measures, such as high-volume dental suction placed in proximity to the dental operative site, has been shown to reduce ambient N₂O levels significantly. Diligent use of the above practices in the pediatric dental environment has allowed for the reduction of ambient N₂O to the levels recommended by NIOSH. Measurement of N₂O levels in the dental operatory can be helpful in determining the type and extent of remediation necessary to decrease occupational exposure.

ABBREVIATIONS
Policy statement
The AAPD encourages dentists and dental auxiliaries to maintain the lowest practical levels of N₂O in the dental environment while using N₂O. Adherence to the recommendations below can help minimize occupational exposure to N₂O.

- Educate dental personnel on minimizing occupational exposure to and potential abuse of nitrous oxide.
- Use scavenging systems that remove N₂O during patient’s exhalation.
- Ensure that exhaust systems adequately vent scavenged air and gases to the outside of the building and away from fresh air intake vents.
- Use, where possible, outdoor air for dental operatory ventilation.
- Implement careful, regular inspection and maintenance of the nitrous oxide/oxygen delivery equipment.
- Carefully consider patient selection criteria (i.e., indications and contraindications) prior to administering N₂O.
- Select a properly-fitted mask size for each patient.
- During administration, visually monitor the patient and titrate the flow/percentage to the minimal effective dose of N₂O.
- Encourage patients to minimize talking and mouth breathing during N₂O administration.
- Use high volume dental suction when possible during N₂O administration.
- Administer 100 percent oxygen to the patient for at least five minutes after terminating nitrous oxide use to replace the N₂O in the gas delivery system.

References