Policy on the Use of Lasers for Pediatric Dental Patients

Latest Revision
2022

ABBREVIATIONS

Purpose
The American Academy of Pediatric Dentistry (AAPD) recognizes the judicious use of lasers as a beneficial instrument in providing dental restorative and soft tissue procedures for infants, children, and adolescents, including those with special health care needs. This policy is intended to support safe and evidence-based use of lasers through a review of the fundamentals, types, diagnostic and clinical applications, benefits, and limitations of laser use in pediatric dentistry.

Methods
This policy was developed by the Council on Clinical Affairs, adopted in 2013¹, and last revised in 2017². The revision is based on a review of current dental and medical literature related to the safety and use of lasers. This document included database searches using the term: laser dentistry, dental lasers, laser pediatric dentistry, laser soft tissue treatments, and laser restorative dentistry. Articles were evaluated by title and/or abstract and relevance to pediatric dental care. Expert and/or consensus opinion by experienced researchers and clinicians also was considered.

Background
Medicine began integrating lasers in the mid-1970s for soft tissue procedures. Oral and maxillofacial surgeons incorporated the carbon dioxide (CO₂) laser into practice for removal of oral lesions in the 1980s.³ The first laser specifically for dental use was a neodymium-yttrium-aluminum-garnet (Nd:YAG) laser, developed in 1987 and approved by the United States Food and Drug Administration in 1990.⁴ Since then, laser technology has advanced significantly. Currently, lasers used in dentistry include Nd:YAG, argon, erbium (Er, Cr:YSGG and Er:YAG), diode, and two CO₂ wavelengths. The use of lasers contributes
to many areas of dentistry including periodontics, pediatrics, endodontics, oral surgery, restorative dentistry, dental hygiene, cosmetic dental whitening, and pain management.

**Laser basics**

While a detailed description of how lasers work is beyond the scope of this document, the basics of laser physics are important to understand prior to selecting a laser for dental treatment. The term laser is an acronym for light amplification by stimulated emission of radiation. Within a laser, an active medium (e.g., erbium crystal, CO₂ gas, a semiconductor) is stimulated to produce photons of energy that are delivered in a beam of unique wavelength measured in nanometers. The wavelength of a dental laser is the determining factor of the level to which the laser energy is absorbed by the intended tissue. Target tissues differ in their affinity for specific wavelengths of laser energy depending on the presence of the chromophore or the laser-absorbing elements of the tissue. Oral hard and soft tissues have a distinct affinity for absorbing laser energy of a specific wavelength. For this reason, selecting a specific laser unit depends on the target tissue the practitioner wishes to treat.

The primary effect of a laser within target tissues is photo-thermal, meaning the laser energy is transformed into heat. When the temperature of the target tissue containing water is raised above 100 degrees Celsius, vaporization of the water occurs, resulting in soft tissue ablation. Since soft tissue is made up of a high percentage of water, excision of soft tissue initiates at this temperature. Dental hard tissue is composed of hydroxyapatite, mineral, and water. Erbium lasers do not ablate hard tissues directly, but vaporization of the water component causes the resulting steam to expand and then disperses the encompassing material into small particles, a process known as spallation. The 9300 nm CO₂ wavelength targets absorption within the water component, as well as the phosphate and hydrogen phosphate anions of the hydroxyapatite mineral molecule and is, therefore, capable of ablating enamel and dentin.

Laser operating parameters such as power, frequency, emission mode, thermal relaxation time, and air and water coolant used affect the clinical abilities of a laser. Additionally, the delivery system of laser unit as well as the tissue concentration of the chromophore greatly influence the laser-tissue interactions.

Clinical applications of the lasers commonly used in pediatric dentistry are listed in the Table.
Laser safety

Adherence to safe laser practices is a duty of every laser practitioner, but identification of a laser safety officer for a clinical facility can maximize safe and effective operation of the laser. This person would provide all necessary information, inspect and maintain the laser and its accessories, and ensure that all safety procedures are implemented. Because reflected or scattered laser beams may be hazardous to unprotected skin or eyes, wearing wavelength-specific protective eyewear is required at all times by the dental team, patient, and observers during laser use. Laser plume results from the aerosol byproducts of laser-tissue interaction and may contain particulate organic and inorganic matter (e.g., viruses, toxic gases, chemicals) which may be infectious or carcinogenic.

When using dental lasers adherence to infection control protocol, including wearing a 0.1 μm filtration mask, and utilization of high-speed suction are imperative. Sparks from lasers can contribute to patient fire in the presence of an oxidizer enriched atmosphere and combustible agents (e.g., dry gauze, throat pack, paper, cotton products; hair; petroleum-based lubricants; alcohol-based products; rubber dam and nitrous mask). Safe laser practices reduce the risk of fire.

Providing soft tissue treatment of viral lesions in immunocompromised patients has the risk of disease transmission from laser-generated aerosol. Palliative pharmacological therapies may be more acceptable and appropriate in this group of patients in order to prevent viral transmission. Many states have well-defined laser safety regulations, and information can be obtained from state boards.

Benefits of lasers in pediatric dentistry

One of the benefits of laser use in pediatric dentistry is the selective and precise interaction with diseased tissues. Less thermal necrosis of adjacent tissues is produced with lasers than with electrosurgical instruments. During soft tissue procedures, hemostasis can be obtained without the need for sutures in most cases. This may allow wound healing to occur more rapidly with less post-operative discomfort and a reduced need for analgesics. Little to no local anesthesia is required for most soft-tissue treatments. Reduced operator chair time has been observed when soft tissue procedures have been completed using lasers. Lasers demonstrate decontaminating and bacteriocidal properties on tissues, requiring less prescribing of antibiotics post-operatively.
Laser therapeutics can occur without a photothermal event, and these effects are known as photobiomodulating (PBM) or low-level laser effects. PBM therapy has been used in children for prevention and treatment of oral mucositis associated with immunosuppressive therapy (chemotherapy, radiation, and transplants). PBM may reduce postsurgical or traumatic oral pain, and pain during cavity preparation. Laser therapy (PBM as well as application of erbium and CO₂ laser energy) can provide relief from the pain and inflammation associated with aphthous ulcers and herpetic lesions without pharmacological intervention; however, more studies are needed to establish the laser type and therapeutic parameters (e.g. applied energy, wavelength, power outlet) recommended for children.

Nd:YAG, erbium, and 9300 nm CO₂ lasers have been shown to have an analgesic effect on hard tissues, reducing or eliminating the use of local anesthesia during tooth preparations. The mechanism for laser analgesia is not known; however, proposed explanations include that the photo-acoustic effect of laser energy acts within the gate control pathway blocking pain sensations, direct and indirect influences of laser energy on nerves and nociceptors, and modifications of the sodium/potassium pump systems inhibiting nerve transmission. During restorative procedures, conventional dental handpieces produce noise and vibrations which have been postulated as stimulating discomfort, pain, and anxiety for the pediatric patient. The non-contact of lasers with hard tissue eliminates the vibratory effects of the conventional high-speed handpiece and may reduce anxiety related to rotary instruments.

Lasers can remove caries effectively with minimal involvement of surrounding tooth structure because caries-affected tissue has a higher water content than healthy tissue.

Disadvantages of lasers in pediatric dentistry

Laser use in pediatric dentistry has some disadvantages. Since different wavelengths are necessary for various soft and hard tissue procedures, the practitioner may need more than one laser. Laser use requires additional training and education for the various clinical applications and types of lasers. High start-up costs are required to purchase the equipment, implement the technology, and invest in the required education and training. Laser manufacturers provide training on their own units, but most laser education is obtained through continuing education courses. Few dental schools and graduate programs currently provide comprehensive laser education. Most dental instruments are both side- and end-cutting; lasers are exclusively end-cutting, and lasers are unable to ablate metallic restorations. Cavity preparations are slower to make with a laser than with a highspeed handpiece. Modifications in clinical technique along with additional preparation with handpieces may be required to finish tooth preparations.
Policy statement

The AAPD:

- recognizes the use of lasers as an alternative and complementary method of providing soft and hard tissue dental procedures for infants, children, adolescents, and persons with special health care needs.
- advocates the dental professional receive additional didactic and experiential education and training on the use of lasers before applying this technology on pediatric patients.
- encourages dental professionals to research, implement, and utilize the appropriate laser specific and optimal for the indicated procedure. Understanding the technology and clinical implications is necessary before practitioners utilize lasers in patient care.
- encourages additional research regarding the safety, efficacy, and application of lasers for dental care for pediatric patients.
- supports patient, visitor, and staff safety through identification of a laser safety officer, supplementation of infection control practices, and use of wavelength-specific protective eyewear when a dental facility employs laser technology.

References


Table. LASER BASICS IN PEDIATRIC DENTISTRY

<table>
<thead>
<tr>
<th>Laser type</th>
<th>Wavelength</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>450 - 655 nm</td>
<td>1. Laser fluorescence – diagnostic applications, detection of occlusal caries, detecting calculus in periodontal pockets, detection of dysplastic cells during oral cancer screening&lt;sup&gt;7,10&lt;/sup&gt;</td>
</tr>
</tbody>
</table>
| Diode          | 810 – 980 nm | 1. Soft tissue procedures – gingival contouring for esthetic purposes, frenectomy, gingivectomy, operculectomy, biopsy<sup>5,10</sup>  
2. Photobiomodulation – proliferation of fibroblasts and enhancing the healing of oral lesions (mucositis, aphthous ulcers, herpetic lesions,), or surgical wounds<sup>6,25</sup>  
3. Periodontal procedures – laser bacterial reduction, elimination of necrotic epithelial tissue during regenerative periodontal surgeries<sup>36</sup>  
4. Enamel whitening<sup>8</sup> |
| Er, Cr:YSGG*   | 2,780 nm   | 1. Hard tissue procedures – enamel etching, caries removal and cavity preparation in enamel and dentin<sup>5,7,10</sup>  
2. Osseous tissue procedures – bone ablation<sup>5,10</sup>  
3. Soft tissue procedures – incision, excision, vaporization, coagulation and hemostasis; gingival contouring for esthetic purposes, frenectomy, gingivectomy, operculectomy, biopsy<sup>5,10</sup>  
4. Endodontic therapy – pulp cap, pulpotomy, pulpectomy, root canal preparation<sup>37</sup>  
5. Periodontal procedures – laser bacterial reduction, elimination of necrotic epithelial tissue during regenerative periodontal surgeries<sup>36</sup>  
6. Treatment of oral ulcerative lesions<sup>24</sup> |
| Er:YAG**       | 2,940 nm   | 1. Hard tissue procedures – caries removal and cavity preparation in enamel and dentin<sup>5,7,10</sup>  
2. Endodontic therapy – root canal preparation<sup>37</sup> |
| CO2†           | 9,300 nm   | 1. Hard tissue procedures – enamel etching, caries removal and cavity preparation in enamel and dentin<sup>11</sup>  
2. Osseous tissue procedures – bone ablation  
3. Soft tissue procedures – gingival contouring for esthetic purposes, frenectomy, gingivectomy, operculectomy, biopsy<sup>5,10</sup> |
| CO2            | 10,600 nm  | 1. Soft tissue procedures – gingival contouring for esthetic purposes, frenectomy, gingivectomy, biopsy<sup>5,10,37</sup>  
2. Treatment of oral ulcerative lesions<sup>24,37</sup>  
3. Periodontal procedures – elimination of necrotic epithelial tissue during regenerative periodontal surgeries<sup>37</sup> |

* Er, Cr:YSGG – erbium, chromium, yttrium, scandium, gallium, garnet. ** Er:YAG – erbium, yttrium, aluminum, garnet. † CO₂: Carbon dioxide