Clinical guideline on management of acute dental trauma

Originating Council
Council on Clinical Affairs

Review Council
Council on Clinical Affairs

Adopted
2001

Revised
2004

Purpose
The American Academy of Pediatric Dentistry intends these guidelines to define, describe appearances, and set forth objectives for general management of acute traumatic dental injuries rather than recommend specific treatment procedures that have been presented in considerably more detail in textbooks and the dental/medical literature.

Methods
This guideline is based on a review of the current dental and medical literature related to dental trauma. A MEDLINE search was conducted using the terms “teeth”, “trauma”, “permanent teeth”, and “primary teeth”. Also, a review of the journal “Dental Traumatology” was conducted for the years 2000-2003. The recommendations are congruent with the 2001 guidelines developed by the International Association of Dental Traumatology (IADT).

Background/literature review
Facial trauma that results in fractured, displaced, or lost teeth can have significant negative functional, esthetic, and psychological effects on children. Dentists and physicians should collaborate to educate the public about prevention and treatment of oral traumatic injuries.

The greatest incidence of trauma to the primary dentition occurs at 2 to 3 years of age, when motor coordination is developing. The most common injuries to permanent teeth occur secondary to falls, followed by traffic accidents, violence and sports. All sporting activities have an associated risk of orofacial injuries due to falls, collisions, and contact with hard surfaces. The AAPD encourages the use of protective gear, including mouthguards, which help distribute forces of impact, thereby reducing the risk of severe injury.

Dental injuries could have improved outcomes if the public were aware of first-aid measures and the need to seek immediate treatment. Because optimal treatment results follow immediate assessment and care, dentists have an ethical obligation to ensure that appropriate emergent dental care is available at all times. The history,
circumstances of the injury, pattern of trauma, and behavior of the child and/or
caregiver are important in distinguishing non-abusive injuries from abuse.18

Practitioners have the responsibility to recognize, differentiate, and either
appropriately manage or refer children with acute oral traumatic injuries as dictated by
the complexity of the injury and the individual clinician’s training, knowledge, and
experience. Compromised airway or suspected loss of consciousness requires further
evaluation by a physician. To determine efficiently the extent of injury and correctly
diagnose injuries to the teeth, periodontium, and associated structures, a systematic
approach to the traumatized child is essential.19 Assessment should includes a thorough
history, visual and radiographic examination, and additional tests such as palpation,
percussion, and mobility evaluation. Intraoral radiography is useful for the evaluation
of dentoalveolar trauma. If the area of interest extends beyond the dentoalveolar
complex, extraoral imaging may be indicated. The planned treatment should Treatment
planning takes into consideration the patient's health status and developmental status as
well as extent of injuries. Advanced behavior management techniques or an appropriate
referral may be necessary to insure proper diagnosis and care are given.

All relevant diagnostic information, treatment, and recommended follow up
should be care are documented in the patient’s record. (see Appendix I for is a sample
document for recording assessment of acute traumatic injuries. This sample form,
developed by the American Academy of Pediatric Dentistry, is provided as a practice
tool for pediatric dentists and other dentists treating children. It was developed by
experts in pediatric dentistry, and offered to facilitate excellence in practice. However,
this form does not establish or evidence a standard of care. In issuing this form, the
American Academy of Pediatric Dentistry is not engaged in rendering legal or other
professional advice. If such services are required, competent legal or other professional
counsel should be sought.) Well-designed follow-up procedures are essential to
diagnose complications.

After a primary tooth has been injured, the treatment strategy is dictated by the
concern for the safety of the permanent dentition.7,19,20 If determined that the displaced
primary tooth has encroached upon the developing permanent tooth germ, removal is
indicated.2,7,21-25 In the primary dentition, the maxillary anterior region is at low risk for
space loss unless the avulsion occurs prior to the eruption of the canines.20 To satisfy
parental concerns for esthetics or to return a loss of oral or phonetic function, fixed or
removable appliances can be fabricated.7,20

When an injury to a primary tooth occurs, informing parents about possible
crown root complications, appearance of a vestibular sinus tract, or color change of the
crown associated with a sinus tract can help assure timely intervention, minimizing
complications for the developing succedaneous teeth.2,7,26 Also, it is important to
cautions parents that the displacement of a primary tooth may result in any of several
permanent tooth complications including enamel hypoplasia, hypocalcification,
crown/root dilacerations, or disruptions in eruptions.26

The treatment strategy after injury to a permanent tooth is dictated by the
concern for vitality of the periodontal ligament and pulp. Subsequent to the initial
management of the dental injury, continued periodic monitoring is indicated to
determine clinical and radiographic evidence of successful intervention (ie,
asymptomatic, positive sensitivity to pulp testing, root continues to develop in immature teeth, no mobility, no periapical pathology). In cases of spontaneous pain, abnormal response to pulp tests, lack of continued root formation or apexogenesis, or breakdown of periradicular supportive tissue, initiation of endodontic treatment is indicated. To restore a fractured tooth’s normal esthetics and function, reattachment of the crown fragment is an alternative that can be considered.

To stabilize a tooth following traumatic injury, a splint may be necessary. Flexible splinting assists in periodontal healing. Characteristics of the ideal splint include: easily fabricated in the mouth without additional trauma, passive unless orthodontic forces are intended, allows physiologic mobility (except for root fractures), non-irritating to soft tissues, does not interfere with occlusion, allows endodontic access, easily cleansed, and easily removed. Instructions to patients having a splint placed include to avoid biting on splinted teeth, maintain meticulous oral hygiene, call immediately if splint breaks/loosens, and use chlorhexidine/antibiotics as prescribed.

Recommendations Definitions and management

Infraction

Definition: Incomplete fracture (crack) of the enamel without loss of tooth structure.

Diagnosis: Normal gross anatomic and radiographic appearance; craze lines apparent, especially with trans-illumination.

Treatment objectives: To maintain structural integrity and pulp vitality.

Follow up: At 4 to 6 weeks and for at least 1 year.

General prognosis: Complications are unusual.

Crown Coronal fracture – Uncomplicated

Definition: An enamel fracture or an enamel-dentin fracture that does not involve the pulp.

1. enamel fracture: a loss of tooth structure confined to enamel;
2. enamel/dentin fracture: a loss of tooth structure extending into dentin but not the pulp;
3. coronal fracture including pulp: a loss of tooth structure resulting in pulp exposure.

Diagnosis: Clinical and/or radiographic findings reveal a loss of tooth structure confined to the enamel or both the enamel and dentin. Clinically, there is an altered anatomic form. Radiographically, loss of coronal tooth structure usually is apparent.

Treatment objectives: To maintain pulp vitality and restore normal esthetics and function. Injured lips, tongue and gingiva should be examined for tooth fragments. For small fractures, rough margins and edges can be smoothed. For larger fractures, the lost tooth structure can be restored.
Follow up:
1. without pulp exposure: at 4 to 6 weeks and for at least 1 year;
2. with pulp exposure: at 2, 6 and 12 months, then annually for 3 to 4 years.

General prognosis:
The prognosis of uncomplicated crown fractures depends primarily upon the concomitant injury to the periodontal ligament and secondarily upon the extent of dentin exposed.19 Complications occur less frequently in coronal fractures without pulp exposure or concomitant luxation injuries. Optimal treatment results follow immediate assessment and care.

Crown fracture – Complicated
Definition: An enamel-dentin fracture with pulp exposure.
Diagnosis: Clinical and radiographic findings reveal a loss of tooth structure with pulp exposure.1,3,7,19
Treatment objectives: To maintain pulp vitality and restore normal esthetics and function. Injured lips, tongue, and gingiva should be examined for tooth fragments.
Primary teeth: 1,7,20-22
Decisions often are based on life expectancy of the traumatized primary tooth and vitality of the pulpal tissue. Pulpal treatment alternatives are pulpotomy, pulpectomy, and extraction.
Permanent teeth: 3,19,35
Pulpal treatment alternatives are direct pulp capping, partial pulpotomy, and pulpectomy (start of root canal therapy).

General prognosis:
The prognosis of crown fractures appears to depend primarily upon a concomitant injury to the periodontal ligament.19 The age of the pulp exposure, extent of dentin exposed, and stage of root development at the time of injury secondarily affect the prognosis of the tooth.19 Optimal treatment results follow immediate assessment and care.

Root fracture
Definition: Dental fracture involving cementum, dentin and the pulp.
Diagnosis: Clinically, the tooth may appear elongated. Radiographically, the coronal portion of the tooth may appear partially removed from the socket with the apical portion intact. One or more radiolucent lines may separate the tooth fragments in horizontal fractures. Multiple radiographic exposures at different vertical angulations may be required to diagnose. Root fracture of a primary tooth may be obscured by a succedaneous tooth.
Treatment objectives: To reposition as soon as possible and then to stabilize the coronal fragment in its anatomically correct position to optimize healing of the periodontal
ligament and neurovascular supply while maintaining esthetic and functional integrity. 9,10

Follow up: At 2 weeks and 2, 3 and 12 months. 9

Prognosis: The stage of root development at the time of injury and degree of displacement appear to be significant prognostic factors. Complications frequently are associated with this injury. Close monitoring is necessary to determine the need for pulp therapy.

Crown/root fracture

Definition: Dental fracture involving an enamel, dentin, and cementum fracture with or without pulp exposure involvement.

Diagnosis: 1,3,7,19,25 Clinical findings usually reveal a mobile coronal fragment attached to the gingiva with or without a pulp exposure. Radiographic findings may reveal a radiolucent oblique line that comprises crown and root in a vertical direction in primary teeth and in a direction usually perpendicular to the central radiographic beam in permanent teeth. While, radiographic demonstration is often difficult, root fractures can only be diagnosed radiographically. Clinically, a fracture will be evident within the crown. A mobile fragment extending beneath the gingival margin may remain attached. This injury is usually painful. Radiographically, the fracture line may be difficult to distinguish.

Treatment objectives: To maintain pulp vitality and restore normal esthetics and function. 11

Primary teeth: 1,7
When the primary tooth cannot or should not be restored, the entire tooth should be removed unless retrieval of apical fragments may result in damage to the succedaneous tooth.

Permanent teeth: 3,19
Emergency treatment objective is to stabilize the coronal fragment. Definitive treatment alternatives are to remove the coronal fragment followed by a supragingival restoration or necessary gingivectomy, osteotomy, or surgical or orthodontic extrusion to prepare for restoration. If the pulp is exposed, pulpal treatment alternatives are pulp capping, pulpotomy, and root canal treatment.

Follow up: At 1, 2, 6 and 12 months or as dictated by treatment considerations. 9

Although the treatment of crown-root fractures can be complex and laborious, most fractured permanent teeth can be saved. 19 Fractures extending significantly below the gingival margin may not be restorable.

Root fracture

Definition: A dentin and cementum fracture involving the pulp.
Diagnosis: Clinical findings reveal a mobile coronal fragment attached to the gingiva that may be displaced. Radiographic findings may reveal one or more radiolucent lines that separate the tooth fragments in horizontal fractures. Multiple radiographic exposures at different angulations may be required to diagnosis. A root fracture in a primary tooth may be obscured by a succedaneous tooth.

Treatment objectives: To reposition as soon as possible and then to stabilize the coronal fragment in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity.

Primary teeth: Treatment alternatives are extraction of coronal fragment without insisting on removing apical fragment or observation.

Permanent teeth: Reposition and stabilize the coronal fragment.

General prognosis:

Pulp necrosis in root fractured teeth (~25%) is attributed to displacement of the coronal fragment and mature root development. In permanent teeth, the location of the root fracture has not been shown to affect pulp survival after injury. Therefore, root fractures occurring in either the cervical third or apical third of the tooth could be successfully treated by stabilization of the repositioned fragment.

Concussion

Definition: Injury to the tooth supporting structures without abnormal loosening or displacement of the tooth.

Diagnosis: Because the periodontal ligament absorbs the injury and is inflamed, clinical findings reveal a tooth tender to pressure and percussion without mobility, displacement or sulcular bleeding. Radiographic abnormalities are not expected. Normal clinical and radiographic appearances, marked reaction to percussion.

Treatment objectives: To optimize healing of the periodontal ligament and maintain pulp vitality.

Follow up: At 6 weeks and 1 year.

General prognosis:

For primary teeth, unless associated infection exists, no pulpal therapy is indicated. Although there is a minimal risk for pulp necrosis, mature permanent teeth with closed apices may undergo pulpal necrosis due to associated injuries to the blood vessels at the apex and therefore must be followed carefully.

Subluxation

Definition: Injury to tooth supporting structures with abnormal loosening but without displacement of tooth.
Diagnosis: Because the periodontal ligament attempts to absorb the injury, clinical findings reveal a mobile tooth without displacement that may or may not have sulcular bleeding. Radiographic abnormalities are not expected.

Treatment objectives: To stabilize the tooth to optimize healing of the periodontal ligament and neurovascular supply.

Primary teeth:
The tooth should be followed for pathology.

Permanent teeth:
Stabilize the tooth and relieve any occlusal interferences. For comfort, a flexible splint can be used. Splint for no more than 2 weeks.

Follow up: At 6 weeks and 1 year in mild cases; more frequently in severe cases.

General prognosis:
Prognosis is usually favorable. The primary tooth should return to “normality” within 2 weeks. Mature permanent teeth with closed apices may undergo pulpal necrosis due to associated injuries to the blood vessels at the apex and therefore must be followed carefully.

Complications are unusual. Teeth with immature root development have greater pulp survival.

Intrusion
Definition: Apical displacement of the tooth into alveolar bone.

Diagnosis: Clinically, the tooth appears shortened or, in severe cases, it may appear missing. Radiographically, the tooth appears displaced apically and the periodontal ligament space is not continuous. Determination of the relationship of an intruded primary tooth with the follicle of the succedaneous tooth is mandatory.

Treatment objectives:
1. permanent teeth: to reposition and stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity;
2. primary teeth: to allow spontaneous reeruption except when displaced into the developing successor.

Follow up: At 1, 2, 6 and 12 months to assess reeruption and complications.

Prognosis: The stage of root development at the time of injury appears to be the significant prognostic factor. Pulp necrosis frequently occurs in permanent teeth with closed apices.

Extrusion
Definition: Partial displacement of the tooth apically from the socket.
Diagnosis: Clinically, the tooth appears elongated and is mobile. Radiographically, the tooth appears partially removed from socket (increased width in the apical periodontal ligament space).

Treatment objectives: 7, 8, 12-15

1. ______ permanent teeth: To reposition as soon as possible and then to stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity;

2. ______ primary teeth: To reposition and allow for healing except when the injury is severe or the tooth is nearing exfoliation.

Follow up: For splint removal and subsequently for evaluation of pulp and periodontal healing at 1, 2, 3, 6 and 12 months. 9

Prognosis: The stage of root development at the time of injury appears to be a significant prognostic factor. Teeth with immature root development have greater pulp survival. Complications frequently are associated with this injury.

Lateral luxation

Definition: Displacement of the tooth into a direction other than axially. The periodontal ligament is torn and contusion or fracture of the supporting alveolar bone occurs. 20, 28

Diagnosis: 2, 4, 7, 19 Clinical findings reveal that a tooth is displaced laterally with the crown usually in a palatal or lingual direction and may be locked firmly into this new position. The tooth is usually not mobile or tender to touch. Radiographic findings reveal an increase in periodontal ligament space and displacement of apex toward or through the labial bone plate.

Treatment objectives: 7, 8, 12-15

1. ______ permanent teeth: To reposition as soon as possible and then to stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity;

2. ______ primary teeth: 2, 7, 21-25 To allow passive repositioning or actively reposition and splint for 1-2 weeks as indicated to allow for healing except when the injury is severe or the tooth is nearing exfoliation.

Permanent teeth: 4, 10, 25, 36 To reposition as soon as possible and then to stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity.

Repositioning of the tooth is done with little force and digital pressure. The tooth may need to be extruded to free apical lock in the cortical bone plate. Splinting an additional 2-4 weeks may be needed with breakdown of marginal bone.

Follow up: For splint removal and subsequently for evaluation of pulp and periodontal healing at 1, 2, 3, 6 and 12 months. 9

General prognosis:
Primary teeth requiring repositioning have an increased risk of developing pulp necrosis compared to teeth that are left to spontaneously reposition. In mature permanent teeth with closed apices, there is considerable risk for pulp necrosis and progressive root resorption. The stage of root development at the time of injury appears to be a significant prognostic factor. Teeth with immature root development have greater pulp survival. Complications frequently are associated with this injury.

Intrusion

Definition: Apical displacement of tooth into the alveolar bone. The tooth is driven into the socket compressing the periodontal ligament and commonly causes a crushing fracture of the alveolar socket.

Diagnosis: Clinical findings reveal that the tooth appears to be shortened or, in severe cases, it may appear missing. The tooth’s apex usually is displaced labially toward or through the labial bone plate in primary teeth and driven into the alveolar process in permanent teeth. The tooth is not mobile or tender to touch. Radiographic findings reveal that the tooth appears displaced apically and the periodontal ligament space is not continuous. Determination of the relationship of an intruded primary tooth with the follicle of the succedaneous tooth is mandatory. If the apex is displaced labially, the apical tip can be seen radiographically with the tooth appearing shorter than its contralateral. If the apex is displaced palatally towards the permanent tooth germ, the apical tip cannot be seen radiographically and the tooth appears elongated. An extraoral lateral radiograph also can be used to detect displacement of the apex toward or through the labial bone plate. An intruded young permanent tooth may mimic an erupting tooth.

Treatment objectives:

Primary teeth: To allow spontaneous re-eruption except when displaced into the developing successor. Extraction is indicated when the apex is displaced toward the permanent tooth germ.

Permanent teeth: To reposition passively or actively and stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity. In teeth with immature root formation, allow for spontaneous eruption. In mature teeth, reposition tooth with orthodontic or surgical extrusion and initiate endodontic treatment within the first 3 weeks of the traumatic incidence.

General prognosis:

In primary teeth, 90% of intruded teeth will re-erupt spontaneously in 2-6 months. Even in cases of complete intrusion and displacement of primary teeth through the labial bone plate, a retrospective study showed the re-eruption and survival of most teeth for more than 36 months. However, ankylosis may occur if the periodontal ligament of the affected tooth was severely damaged thereby delaying or altering the eruption of the permanent successor. In permanent mature teeth with closed apices, there is considerable risk for pulp necrosis and progressive root resorption.
Extrusion

Definition: Partial displacement of the tooth apically from the socket. The periodontal ligament usually is torn.\(^{20, 27}\)

Diagnosis:\(^{2, 4, 7, 19}\) Clinical findings reveal that the tooth appears elongated and is mobile. Radiographic findings reveal an increased periodontal ligament space apically.

Treatment objectives:

- **Primary teeth:**\(^{2, 7, 20-25}\) To reposition and allow for healing except when there are indications for an extraction (ie, the injury is severe or the tooth is nearing exfoliation). If treatment decision is to reposition and stabilize, splint for 1-2 weeks.
- **Permanent teeth:**\(^{4, 19, 25, 36}\) To reposition as soon as possible and then to stabilize the tooth in its anatomically correct position to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity. Repositioning may be accomplished with slow and steady apical pressure to gradually displace coagulum formed between root apex and floor of the socket. Splint for up to 3 weeks.

General Prognosis:

There is a lack of clinical studies evaluating repositioning of extruded primary teeth.\(^{7}\) In permanent mature teeth with closed apices, there is considerable risk for pulp necrosis. These teeth must be followed carefully.\(^{4, 19}\)

Avulsion

Definition: Complete displacement of tooth out of socket. The periodontal ligament is severed and fractures of the alveolus may occur.\(^{20, 27}\)

Diagnosis:\(^{2, 7, 19, 20, 27}\) Clinically and radiographically, clinical and radiographic findings reveal that the tooth is not present in the socket or the tooth already has been replanted. Radiographic assessment will verify that the tooth is not intruded when the tooth was not found.

Treatment objectives

- **Primary teeth:**\(^{2, 7, 19, 20, 24, 25}\) To prevent further injury to the developing successor. Avulsed primary teeth should not be replanted because of the potential for subsequent damage to developing permanent tooth germs and pulpal necrosis is a frequent event.
- **Permanent teeth:**\(^{5, 19, 25, 38-44}\) To reposition replant as soon as possible and then to stabilize the replanted tooth in its anatomically correct location to optimize healing of the periodontal ligament and neurovascular supply while maintaining esthetic and functional integrity except when replanting is contraindicated by the child’s stage of dental development (risk for ankylosis where considerable alveolar growth has to take place) or compromising medical condition or by compromised integrity of the avulsed tooth or supporting tissues. Flexible splinting for 1 week is indicated.\(^{5}\) Tetanus prophylaxis and antibiotic coverage should be considered. In order to prevent further injury to the developing successor, avulsed primary teeth are not replanted.\(^{15-23}\)
Follow up: For pulp extirpation (if indicated), for splint removal and for evaluation of pulp and periodontal healing at 1, 2, 3, 6 and 12 months.9

General prognosis:
Prognosis in the permanent dentition is primarily dependent upon formation of root development and extra-oral dry time.5, 19 The stage of root development at the time of injury, duration of extra-alveolar time and extra-alveolar storage medium are significant prognostic factors in reimplantation. When a permanent tooth is avulsed, its prognosis is related directly to the duration of extra-alveolar time. The tooth has the best prognosis if reimplanted immediately. If the tooth cannot be reimplanted immediately, it should be stored in a medium that will help maintain vitality of the periodontal ligament fibers.26 Transportation media for avulsed teeth include (in order of preference) Viaspan®, Hank’s Balanced Salt Solution (tissue culture medium), cold milk, physiologic saline, saliva (buccal vestibule), physiologic saline, and or water.16,20-22,38,42-45 The risk of ankylosis increases significantly with an extra-oral dry time of 15 minutes.26

Additional considerations: There are possible contraindications to tooth replantation. Examples are immunocompromise, severe congenital cardiac anomalies, severe uncontrolled seizure disorder, severe mental disability, severe uncontrolled diabetes, and lack of alveolar integrity.

To stabilize a tooth following traumatic injury, a splint may be necessary.23-26 Characteristics of the ideal splint include: easily fabricated in the mouth without additional trauma, passive unless orthodontic forces are intended, allows physiologic mobility (except for root fractures), non-irritating to soft tissues, does not interfere with occlusion, allows endodontic access, easily cleansed and easily removed. Patients having a splint placed should be instructed to avoid biting on splinted teeth, maintain meticulous oral hygiene, call immediately if splint breaks / loosens and use chlorhexidine / antibiotics as prescribed.

References
Clinical guideline on management of acute dental trauma

