Guidelines for the Management of Traumatic Dental Injuries: 1. Fractures and Luxations of Permanent Teeth

Originating Group
International Association of Dental Traumatology

Endorsed by the American Academy of Pediatric Dentistry
2013

Anthony J. DiAngelis*1 • Jens O. Andreasen*2 • Kurt A. Ebeleseder*3 • David J. Kenny*4 • Martin Trope*5 • Asgeir Sigurdsson*6 • Lars Andersson7
Cecilia Bourguignon8 • Marie Therese Flores9 • Morris Lamar Hicks10 • Antonio R. Lenzii11 • Barbro Malmgren12
• Alex J. Moule13 • Yango Pohl14 • Mitsuhiro Tsukiboshi15

Abstract: Traumatic dental injuries (TDIs) of permanent teeth occur frequently in children and young adults. Crown fractures and luxations are the most commonly occurring of all dental injuries. Proper diagnosis, treatment planning and followup are important for improving a favorable outcome. Guidelines should assist dentists and patients in decision making and for providing the best care effectively and efficiently. The International Association of Dental Traumatology (IADT) has developed a consensus statement after a review of the dental literature and group discussions. Experienced researchers and clinicians from various specialties were included in the group. In cases where the data did not appear conclusive, recommendations were based on the consensus opinion of the IADT board members. The guidelines represent the best current evidence based on literature search and professional opinion. The primary goal of these guidelines is to delineate an approach for the immediate or urgent care of TDIs. In this first article, the IADT Guidelines for management of fractures and luxations of permanent teeth will be presented. (Dental Traumatology 2012;28:2–12; doi: 10.1111/j.1600-9657.2011.01103.x) Accepted January 7, 2012.

KEYWORDS: CONSENSUS, FRACTURE, LUXATION, REVIEW, TRAUMA, TOOTH

Traumatic dental injuries (TDIs) occur with great frequency in preschool, school-age children, and young adults comprising 5% of all injuries for which people seek treatment (1, 2). A 12-year review of the literature reports that 25% of all school children experience dental trauma and 33% of adults have experienced trauma to the permanent dentition, with the majority of injuries occurring before age nineteen (3). Luxation injuries are the most common TDIs in the primary dentition, whereas crown fractures are more commonly reported for the permanent dentition (1, 4, 5) TDIs present a challenge to clinicians worldwide. Consequently, proper diagnosis, treatment planning and follow up are critical to assure a favorable outcome.

Guidelines, among other things, should assist dentists, other healthcare professionals, and patients in decision making. Also, they should be credible, readily understandable, and practical with the aim of delivering appropriate care as effectively and efficiently as possible.

The following guidelines by the International Association of Dental Traumatology (IADT) represent an updated set of guidelines based on the original guidelines published in 2007 (6–8). The update was accomplished by doing a review of the current dental literature using EMBASE, MEDLINE, and PUBMED searches from 1996 to 2011 as well as a search of the journal of Dental Traumatology from 2000 to 2011. Search words included tooth fractures, root fractures, tooth luxation, lateral luxation and permanent teeth, intruded permanent teeth, and luxated permanent teeth.

Whenever referring to IADT Guidelines, the original article, (Dent Traumatol 2012;28:2-12) should always be used as reference.
The primary goal of these guidelines is to delineate an approach for the immediate or urgent care of TDI. It is understood that subsequent treatment may require secondary and tertiary interventions involving specialist consultations, services, and/or materials/methods not always available to the primary treating clinician.

The IADT published its first set of guidelines in 2001 and updated them in 2007 (6–13). As with the previous guidelines, the working group included experienced investigators and clinicians from various dental specialities and general practice. This revision represents the best evidence based on the available literature and expert professional judgment. In cases where the data did not appear conclusive, recommendations are based on the consensus opinion of the working group followed by review by the members of the IADT Board of Directors. It is understood that guidelines are to be applied with evaluation of the specific clinical circumstances, clinicians’ judgment, and patients’ characteristics, including but not limited to compliance, finances, and understanding of the immediate and long-term outcomes of treatment alternatives versus non-treatment. The IADT cannot and does not guarantee favorable outcomes from strict adherence to the Guidelines, but believe that their application can maximize the chances of a favorable outcome.

Guidelines undergo periodic updates. These 2012 Guidelines in this journal will appear in three parts:

Part I: Fractures and luxations of permanent teeth
Part II: Avulsion of permanent teeth
Part III: Injuries in the primary dentition

Guidelines offer recommendations for diagnosis and treatment of specific TDI; however, they do not provide the comprehensive nor detailed information found in textbooks, the scientific literature, and, most recently, the Dental Trauma Guide (DTG) that can be accessed on http://www.dentaltraumaguide.org. Additionally, the DTG, also available on the IADT’s web page http://www.iadt-dentaltrauma.org, provides a visual and animated documentation of treatment procedures as well as estimation of prognosis for the various TDI.

General recommendations/considerations

Clinical examination

detailed description of protocols, methods, and documentation for clinical assessment of TDI can be found in current textbooks (1, 14, 15).

Radiographic examination

Several projections and angulations are routinely recommended, but the clinician should decide which radiographs are required for the individual. The following are suggested:

- Periapical radiograph with a 90° horizontal angle with central beam through the tooth in question.
- Occlusal view.
- Periapical radiograph with lateral angulations from the mesial or distal aspect of the tooth in question.

Emerging imaging modalities such as cone-beam computed tomography (CBCT) provide enhanced visualization of TDI, particularly root fractures and lateral luxations, monitoring of healing, and complications. Availability is limited, and its use not currently considered routine; however, specific information is available in the scientific literature (16, 17).

Splinting type and duration

Current evidence supports short-term, non-rigid splints for splinting of luxated, avulsed, and root-fractured teeth. While neither the specific type of splint nor the duration of splinting for root-fractured and luxated teeth are significantly related to healing outcomes, it is considered best practice to maintain the repositioned tooth in correct position, provide patient comfort and improved function (18, 19).

Use of antibiotics

There is limited evidence for use of systemic antibiotics in the management of luxation injuries and no evidence that antibiotic coverage improves outcomes for root-fractured teeth. Antibiotic use remains at the discretion of the clinician as TDI are often accompanied by soft tissue and other associated injuries, which may require other surgical intervention. In addition, the patient’s medical status may warrant antibiotic coverage (19, 20).

Sensibility tests

Sensibility testing refers to tests (cold test and/or electric pulp test) attempting to determine the condition of the pulp. At the time of injury, sensibility tests frequently give no response indicating a transient lack of pulpal response. Therefore, at least two signs and symptoms are necessary to make the diagnosis of necrotic pulp. Regular follow up controls are required to make a pulpal diagnosis.

Immature versus mature permanent teeth

Every effort should be made to preserve pulpal vitality in the immature permanent tooth to ensure continuous root development. The vast majority of TDI occur in children and teenagers where loss of a tooth has lifetime consequences. The immature permanent tooth has considerable capacity for healing after traumatic pulp exposure, luxation injury, and root fractures. Pulp exposures secondary to TDI are amenable to proven conservative pulp therapies that maintain vital pulp tissue and allow for continued root development (21-24). In addition, emerging therapies have demonstrated the ability to revascularize/regenerate vital tissue in canals of immature permanent teeth with necrotic pulps (25-30). Teeth frequently sustain a combination of several injuries. Studies have demonstrated that crown-fractured teeth with or without pulp exposure and associated luxation injury experience a greater frequency of pulp necrosis (31). The mature permanent tooth that sustains a severe TDI after which pulp necrosis is anticipated is amenable to preventive pulpectomy as root development is substantially completed.

Pulp canal obliteration

Pulp canal obliteration (PCO) occurs more frequently in teeth with open apices which have suffered a severe luxation injury. It usually indicates ongoing pulpal vitality. Extrusion, intrusion, and lateral luxation injuries have high rates of PCO (32, 33) Subluxated and crown-fractured teeth also may exhibit PCO, although with less frequency (34). Additionally, PCO is a common occurrence following root fractures (35, 36).
Permanent teeth

1. Treatment guidelines for fractures of teeth and alveolar bone

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Favorable outcome</th>
<th>Unfavorable outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraction</td>
<td>• An incomplete fracture (crack) of the enamel without loss of tooth structure</td>
<td>• No radiographic abnormalities</td>
<td>• In case of marked fractures, etching and sealing with resin to prevent discoloration of the fracture lines; otherwise, no treatment is necessary</td>
<td>• No follow up is generally needed for infraction injuries unless they are associated with a luxation injury or other fracture types</td>
<td>• Asymptomatic</td>
</tr>
<tr>
<td></td>
<td>• Not tender, if tenderness is observed evaluate, the tooth for a possible luxation injury or a root fracture</td>
<td>• Radiographs recommended: a periapical view. Additional radiographs are indicated if other signs or symptoms are present</td>
<td></td>
<td>• Negative response to pulp testing</td>
<td>• Signs of apical periodontitis</td>
</tr>
<tr>
<td>Enamel fracture</td>
<td>• A complete fracture of the enamel</td>
<td>• Enamel loss is visible</td>
<td>• If the tooth fragment is available, it can be bonded to the tooth</td>
<td>• Asymptomatic</td>
<td>• Symptomatic</td>
</tr>
<tr>
<td></td>
<td>• Loss of enamel, No visible sign of exposed dentin</td>
<td>Radiographs recommended: periapical, occlusal, and eccentric exposures. They are recommended in order to rule out the possible presence of a root fracture or a luxation injury</td>
<td>• Contouring or restoration with composite resin depending on the extent and location of the fracture</td>
<td>• Positive response to pulp testing</td>
<td>• Signs of apical periodontitis</td>
</tr>
<tr>
<td></td>
<td>• Not tender, If tenderness is observed, evaluate the tooth for a possible luxation or root fracture injury</td>
<td>• Radiograph of lip or cheek to search for tooth fragments or foreign materials</td>
<td>6-8 weeks C**</td>
<td>• Continuing root development in immature teeth</td>
<td>• No continuing root development in immature teeth</td>
</tr>
<tr>
<td></td>
<td>• Normal mobility</td>
<td></td>
<td>1 year C***</td>
<td>• Continue to next evaluation</td>
<td>• Endodontic therapy appropriate for stage of root development is indicated</td>
</tr>
</tbody>
</table>
1. Treatment guidelines for fractures of teeth and alveolar bone

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel-dentin fracture</td>
<td>A fracture confined to enamel and dentin with loss of tooth structure, but not exposing the pulp. Percussion test: not tender. If tenderness is observed, evaluate the tooth for possible luxation or root fracture injury. Normal mobility. Sensitivity pulp test usually positive.</td>
<td>Enamel-dentin loss is visible. Radiographs recommended: periapical, occlusal, and eccentric exposure to rule out tooth displacement or possible presence of root fracture. Radiograph of lip or cheek lacerations to search for tooth fragments or foreign materials. If a tooth fragment is available, it can be bonded to the tooth. Otherwise, perform a provisional treatment by covering the exposed dentin with glass ionomer or a more permanent restoration using a bonding agent and composite resin, or other accepted dental restorative materials. If the exposed dentin is within 0.5 mm of the pulp (pink, no bleeding), place calcium hydroxide base and cover with a material such as a glass ionomer.</td>
</tr>
<tr>
<td>Enamel-dentin–pulp fracture</td>
<td>A fracture involving enamel and dentin with loss of tooth structure and exposure of the pulp. Normal mobility. Percussion test: not tender. If tenderness is observed, evaluate for possible luxation or root fracture injury. Exposed pulp sensitive to stimuli.</td>
<td>Enamel-dentin loss visible. Radiographs recommended: periapical, occlusal, and eccentric exposures to rule out tooth displacement or possible presence of root fracture. Radiograph of lip or cheek lacerations to search for tooth fragments or foreign materials. If a tooth fragment is available, it can be bonded to the tooth. Future treatment for the fractured crown may be restoration with other accepted dental restorative materials.</td>
</tr>
</tbody>
</table>

Follow-up procedures for fractures of teeth and alveolar bone:
- 6-8 weeks C**
- 1 year C**

Favorable and unfavorable outcomes include some, but not necessarily all, of the following:
- Asymptomatic
- Positive response to pulp testing
- Continuing root development in immature teeth
- Continue to next evaluation
- Symptomatic
- Negative response to pulp testing
- Signs of apical periodontitis
- No continuing root development in immature teeth
- Endodontic therapy appropriate for stage of root development is indicated

(Continued)

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Favorable outcome</th>
<th>Unfavorable outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crown-root fracture without pulp exposure</td>
<td>A fracture involving enamel, dentin, and cementum with loss of tooth structure, but not exposing the pulp</td>
<td>Apical extension of fracture usually not visible</td>
<td>Emergency treatment</td>
<td>As an emergency treatment, a temporary stabilization of the loose segment to adjacent teeth can be performed until a definitive treatment plan is made</td>
<td>6–8 weeks C°* 1 year C°**</td>
</tr>
<tr>
<td></td>
<td>Crown fracture extending below gingival margin</td>
<td>Radiographs recommended: periapical, occlusal, and eccentric exposures. They are recommended to detect fracture lines in the root</td>
<td>Non-emergency treatment alternatives</td>
<td>Fragment removal only</td>
<td>Non-emergency treatment alternatives</td>
</tr>
<tr>
<td></td>
<td>Percussion test: tender</td>
<td></td>
<td></td>
<td>Removal of the coronal crown–root fragment and subsequent restoration of the apical fragment exposed above the gingival level Fragment removal and gingivectomy (sometimes osteotomy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coronal fragment mobile</td>
<td></td>
<td></td>
<td>Orthodontic extrusion of apical fragment Removal of the coronal segment with subsequent endodontic treatment and orthodontic extrusion of the remaining root with sufficient length after extrusion to support a post-retained crown Surgical extrusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitivity pulp test usually positive for apical fragment</td>
<td></td>
<td></td>
<td>Removal of the mobile fractured fragment with subsequent surgical repositioning of the root in a more coronal position Root submergence</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)

<table>
<thead>
<tr>
<th>Crown-root fracture with pulp exposure</th>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
<th>Follow-up procedures for fractures of teeth and alveolar bone</th>
<th>Favorable and unfavorable outcomes include some, but not necessarily all, of the following</th>
</tr>
</thead>
</table>
| A fracture involving enamel, dentin, and cementum and exposing the pulp | • Apical extension of fracture usually not visible | • Radiographs recommended: periapical and occlusal exposure | Emergency treatment
As an emergency treatment a temporary stabilization of the loose segment to adjacent teeth
In patients with open apices, it is advantageous to preserve pulp vitality by a partial pulpotomy. This treatment is also the choice in young patients with completely formed teeth. Calcium hydroxide compounds are suitable pulp capping materials. In patients with mature apical development, root canal treatment can be the treatment of choice
Non-Emergency Treatment Alternatives
• Fragment removal and gingivectomy (sometimes ostectomy) Removal of the coronal fragment with subsequent endodontic treatment and restoration with a post-retained crown. This procedure should be preceded by a gingivectomy and sometimes ostectomy with osteoplasty. This treatment option is only indicated in crown-root fractures with palatal subgingival extension
• Orthodontic extrusion of apical fragment Removal of the coronal segment with subsequent endodontic treatment and orthodontic extrusion of the remaining root with sufficient length after extrusion to support a post-retained crown
• Surgical extrusion Removal of the mobile fractured fragment with subsequent surgical repositioning of the root in a more coronal position
• Root submergence An implant solution is planned, the root fragment may be left in situ
• Extraction Extraction with immediate or delayed implant-retained crown restoration or a conventional bridge. Extraction is inevitable in very deep crown-root fractures, the extreme being a vertical fracture | 6–8 weeks C**
1 year C** | • Asymptomatic response to pulp testing
• Continuing root development in immature teeth
• Continue to next evaluation | • Symptomatic response to pulp testing
• Signs of apical periodontitis
• No continuing root development in immature teeth
• Endodontic therapy appropriate for stage of root development is indicated |
(Continued)

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Favorable outcome</th>
<th>Unfavorable outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root fracture</td>
<td>• The coronal segment may be mobile and may be displaced
• The tooth may be tender to percussion
• Bleeding from the gingival sulcus may be noted
• Sensibility testing may give negative results initially, indicating transient or permanent neural damage
• Monitoring the status of the pulp is recommended
• Transient crown discoloration (red or gray) may occur</td>
<td>• The fracture involves the root of the tooth and is in a horizontal or oblique plane
• Fractures that are in the horizontal plane can usually be detected in the regular periapical 90° angle film with the central beam through the tooth. This is usually the case with fractures in the cervical third of the root
• If the plane of fracture is more oblique, which is common with apical third fractures, an occlusal view or radiographs with varying horizontal angles is more likely to demonstrate the fracture including those located in the middle third</td>
<td>Reposition, if displaced, the coronal segment of the tooth as soon as possible
• Check position radiographically
• Stabilize the tooth with a flexible splint for 4 weeks. If the root fracture is near the cervical area of the tooth, stabilization is beneficial for a longer period of time (up to 4 months)
• It is advisable to monitor healing for at least 1 year to determine pulpal status
• If pulp necrosis develops, root canal treatment of the coronal tooth segment to the fracture line is indicated to preserve the tooth</td>
<td>4 weeks S°, C°<sup>+</sup>
6–8 weeks C°<sup>+</sup>
4 months S°, C°<sup>+</sup>
6 months C°<sup>+</sup>
1 year C°<sup>+</sup>
5 years C°<sup>+</sup></td>
<td>• Positive response to pulp testing (false negative possible up to 3 months)
• Signs of repair between fractured segments
• Continue to next evaluation</td>
</tr>
<tr>
<td>Alveolar fracture</td>
<td>• The fracture involves the alveolar bone and may extend to adjacent bone
• Segment mobility and dislocation with several teeth moving together are common findings
• An occlusal change because of misalignment of the fractured alveolar segment is often noted
• Sensibility testing may or may not be positive</td>
<td>• Fracture lines may be located at any level, from the marginal bone to the root apex
In addition to the 3 angulations and occlusal film, additional views such as a panoramic radiograph can be helpful in determining the course and position of the fracture lines</td>
<td>Reposition any displaced segment and then splint
• Suture gingival laceration if present
• Stabilize the segment for 4 weeks</td>
<td>4 weeks S°, C°<sup>+</sup>
6–8 weeks C°<sup>+</sup>
4 months C°<sup>+</sup>
6 months C°<sup>+</sup>
1 year C°<sup>+</sup>
5 years C°<sup>+</sup></td>
<td>• Positive response to pulp testing (false negative possible up to 3 months)
• No signs of apical periodontitis
• Continue to next evaluation</td>
</tr>
</tbody>
</table>
(Continued)

<p>| 2. Treatment guidelines for luxation injuries | | | Follow-up procedures for luxated permanent teeth | Favorable and unfavorable outcomes include some, but not necessarily all, of the following* |</p>
<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
<th>Follow up</th>
<th>Favorable outcome</th>
<th>Unfavorable outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concussion</td>
<td>The tooth is tender to touch or tapping; it has not been displaced and does not have increased mobility</td>
<td>No radiographic abnormalities</td>
<td>No treatment is needed</td>
<td>4 weeks C**, 6-8 weeks C**, 1 year C**</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td></td>
<td>Sensitivity tests are likely to give positive results</td>
<td></td>
<td>Monitor pulpal condition for at least 1 year</td>
<td></td>
<td>Positive response to pulp testing</td>
</tr>
<tr>
<td>Subluxation</td>
<td>The tooth is tender to touch or tapping and has increased mobility; it has not been displaced</td>
<td>Radiographic abnormalities are usually not found</td>
<td>Normally no treatment is needed; however, a flexible splint to stabilize the tooth for patient comfort can be used for up to 2 weeks</td>
<td>2 weeks S', C**, 4 weeks C**, 6-8 weeks C**, 6 months C**, 1 year C**</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td></td>
<td>Bleeding from gingival crevice may be noted</td>
<td></td>
<td>Positive response to pulp testing</td>
<td></td>
<td>Negative response to pulp testing</td>
</tr>
<tr>
<td></td>
<td>Sensitivity testing may be negative initially indicating transient pulpal damage</td>
<td></td>
<td>False negative possible up to 3 months</td>
<td></td>
<td>False negative possible up to 3 months</td>
</tr>
<tr>
<td></td>
<td>Monitor pulpal response until a definitive pulpal diagnosis can be made</td>
<td></td>
<td>Continuing root development in immature teeth, signs of apical periodontitis</td>
<td></td>
<td>No continuing root development in immature teeth, signs of apical periodontitis</td>
</tr>
<tr>
<td>Extrusive luxation</td>
<td>The tooth appears elongated and is excessively mobile</td>
<td>Increased periodontal ligament space apically</td>
<td>Reposition the tooth by gently re-inserting it into the tooth socket</td>
<td>2 weeks S', C**, 4 weeks C**, 6-8 weeks C**, 6 months C**, 1 year C**, Yearly 5 years C**</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td></td>
<td>Sensitivity tests will likely give negative results</td>
<td></td>
<td>Stabilize the tooth for 2 weeks using a flexible splint</td>
<td></td>
<td>Clinical and radiographic signs of normal or healed periodontium</td>
</tr>
<tr>
<td></td>
<td>In mature teeth where pulp necrosis is anticipated or if several signs and symptoms indicate that the pulp of mature or immature teeth became necrotic, root canal treatment is indicated</td>
<td></td>
<td>In mature teeth where pulp necrosis is anticipated or if several signs and symptoms indicate that the pulp of mature or immature teeth became necrotic, root canal treatment is indicated</td>
<td></td>
<td>Positive response to pulp testing (false negative possible up to 3 months)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marginal bone height corresponds to that seen radiographically after repositioning</td>
<td></td>
<td>If breakdown of marginal bone, splint for an additional 3-4 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continuing root development in immature teeth</td>
<td></td>
<td>External inflammatory root resorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endodontic therapy appropriate for stage of root development is indicated</td>
</tr>
</tbody>
</table>
(Continued)

2. Treatment guidelines for luxation injuries

<table>
<thead>
<tr>
<th>Clinical findings</th>
<th>Radiographic findings</th>
<th>Treatment</th>
</tr>
</thead>
</table>
| Lateral Luxation | • The tooth is displaced, usually in a palatal/lingual or labial direction
• It will be immobile and percussion usually gives a high, metallic (ankylosis) sound
• Fracture of the alveolar process present
• Sensibility tests will likely give negative results | • The widened periodontal ligament space is best seen on eccentric or occlusal exposures
• Reposition the tooth digitally or with forceps to disengage it from its bony lock and gently reposetion it into its original location
• Stabilize the tooth for 4 weeks using a flexible splint
• Monitor the pulp condition
• If the pulp becomes necrotic, root canal treatment is indicated to prevent root resorption |
| Intrusive luxation | • The tooth is displaced axially into the alveolar bone
• It is immobile, and percussion may give a high, metallic (ankylosis) sound
• Sensitivity tests will likely give negative results | • The periodontal ligament space may be absent from all or part of the root
• The cemento-enamel junction is located more apically in the intruded tooth than in adjacent non-injured teeth, at times even apical to the marginal bone level
• Teeth with incomplete root formation
• Allow eruption without intervention
• If no movement within few weeks, initiate orthodontic repositioning
• If tooth is intruded more than 7 mm, reposition surgically or orthodontically
• Teeth with complete root formation
• Allow eruption without intervention if tooth intruded less than 3 mm
• If no movement after 2–4 weeks, reposition surgically or orthodontically before ankylosis can develop
• If tooth is intruded beyond 7 mm, reposition surgically
• The pulp will likely become necrotic in teeth with complete root formation. Root canal therapy using a temporary filling with calcium hydroxide is recommended and treatment should begin 2–3 weeks after surgery
• Once an intruded tooth has been repositioned surgically or orthodontically, stabilize with a flexible splint for 4–6 weeks |

<table>
<thead>
<tr>
<th>Follow-up procedures for luxated permanent teeth</th>
<th>Favorable and unfavorable outcomes include some, but not necessarily all, of the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>Favorable outcome</td>
</tr>
</tbody>
</table>
| 2 weeks S*, C*, 4 weeks C** 6–8 weeks C** 6 months C** 1 year C** Yearly for 5 years C** | • Asymptomatic
• Clinical and radiographic signs of normal or healed periodontium
• Positive response to pulp testing (false negative possible up to 3 months)
• Marginal bone height corresponds to that seen radiographically after repositioning
• Continuing root development in immature teeth |
| • Symptoms and radiographic signs consistent with apical periodontitis
• Negative response to pulp testing (false positive possible up to 3 months)
• If breakdown of marginal bone, splint for an additional 3–4 weeks
• External inflammatory root resorption or replacement resorption
• Endodontic therapy appropriate for stage of root development is indicated |

C**, clinical and radiographic examination; S*, splint removal; S**, splint removal in cervical third fractures.

For crown-fractured teeth with concomitant luxation injury, use the luxation follow-up schedule.

Whenever there is evidence of external inflammatory root resorption, root canal therapy should be initiated immediately, with the use of calcium hydroxide as an intra-canal medication.
Patient Instructions

Patient compliance with follow-up visits and home care contributes to better healing following a TDI. Both patients and parents of young patients should be advised regarding care of the injured tooth/teeth for optimal healing, prevention of further injury by avoidance of participation in contact sports, meticulous oral hygiene, and rinsing with an antibacterial such as chlorhexidine gluconate 0.1% alcohol free for 1–2 weeks.

Additional resources

Besides the general recommendations mentioned earlier, clinicians are encouraged to access the DTG, the journal Dental Traumatology, and other journals for information pertaining to treatment delay (37), intrusive luxations 38–47, root fractures (48–52), pulpal management of fractured and luxated teeth (34, 53–64, splitting (18, 39, 65–68), and antibiotics (69).

Acknowledgements

IADT is grateful to the team of Dental Trauma Guide www.dentaltraumaguide.org for kindly providing pictures to the article.

References

Corrigendum

Dent Traumatol 2012;28:499

In DiAngelis et al. (1), the following corrections should be made:

Under the heading 'Follow up' for both lateral luxation and intrusion, the first two time periods should be read as:

- 2 weeks, C++ (not 2 weeks S+, C++)
- 4 weeks S+, C++ (not 4 weeks C++)

This makes splint removal at 4 weeks consistent with what is recommended under 'Treatment'.

Under 'Treatment', 'Teeth with complete root formation', there should be an additional second bullet to read as:

- if tooth is intruded 3–7 mm, reposition surgically or orthodontically

The last word in the fourth bulleted sentence should be repositioning instead of surgery. The authors would like to apologize for these errors.

Reference

Reprinted with permission of the International Association of Dental Traumatology (IADT).

AMERICAN ACADEMY OF PEDIATRIC DENTISTRY

Corrigendum

Dent Traumatol 2012;28:499

In DiAngelis et al. (1), the following corrections should be made:

Under the heading 'Follow up' for both lateral luxation and intrusion, the first two time periods should be read as:

- 2 weeks, C++ (not 2 weeks S+, C++)
- 4 weeks S+, C++ (not 4 weeks C++)

This makes splint removal at 4 weeks consistent with what is recommended under 'Treatment'.

Under 'Treatment', 'Teeth with complete root formation', there should be an additional second bullet to read as:

- if tooth is intruded 3–7 mm, reposition surgically or orthodontically

The last word in the fourth bulleted sentence should be repositioning instead of surgery. The authors would like to apologize for these errors.

Reference