1 Policy on Using Harvested Dental Stem Cells

- 2
- 3 Originating Council
- 4 Council on Clinical Affairs
- 5 Review Council
- 6 Council on Clinical Affairs
- 7 Adopted
- 8 2008
- 9 Revised
- 10 2013, <u>2017</u>
- 11

12 <u>Purpose</u>

- 13 The American Academy of Pediatric Dentistry (AAPD) recognizes the emerging field of regenerative
- 14 medicine and encourages dentists to follow future evidence-based literature in order to educate
- 15 parents about the collection, storage, viability, and use of dental stem cells with respect to autologous
- 16 regenerative therapies. <u>The AAPD recognizes that harvested dental stem cells is an emerging science</u>
- 17 which may have application for oral health care but at present there are no treatments available using
- 18 harvested dental stem cells in humans. This policy is related to the use of harvested dental stem cells
- 19 from a tooth or follicle. This policy does not include stem cells which are intrinsically present for
- 20 treatment related to regenerative endodontics from the apical papilla or dental pulp cells. Stem cells
- 21 <u>used for regenerative endodontics and scaffolding have evidenced based literature to show successful</u>
- 22 <u>regeneration.¹⁻³</u>
- 23

24 <u>Methods</u>

- 25 <u>This policy is a review of current dental and medical literature and sources of recognized professional</u>
- 26 <u>expertise related to dental stem cells. An electronic search was conducted using the PubMed®</u>
- 27 <u>electronic database with the following parameters: Terms: "dental stem cell", and "harvested tooth</u>
- 28 <u>cell"</u>; Fields: all; Limits: within the last 10 years, humans, English, birth through age 99. Thirty one
- 29 articles matched these criteria. Papers for review were chosen from this list and from the references
- 30 within selected articles. Expert and/or consensus opinion by experienced researchers and clinicians
- 31 <u>was also considered.</u>
- 32

33 Background

34	Stem cells are pluripotential cells that can divide and multiply for an extended period of time,
35	differentiating into a diverse range of specialized cell types and tissues. Adult mesenchymal stem
36	cells, of which dental stem cells are a subset, are highly proliferative and have the ability to
37	differentiate into many cell lines. ⁴ . The most familiar application of adult stem cell therapy is bone
38	marrow transplantation to treat hematopoietic cancers, metabolic disorders, and congenital
39	immunodeficiency syndromes. Stem cell therapy is undergoing clinical testing for other conditions
40	such as Parkinson's disease, diabetes, and brain trauma/spinal cord injuries 5.6. Suggested applications
41	related to oral health care have included wound healing and regeneration of dental and periodontal
42	tissues as well as craniofacial structures (eg, repair of cleft lip/palate) ⁷ .
43	
44	Parents may elect to preserve umbilical cord blood of their child for future harvesting of stem cells if
45	autologous regenerative therapies are indicated. Pulpal tissue of exfoliating primary teeth, oral
46	mucosa fibroblasts ⁸ and surgically removed third molars, periodontal ligament ⁹ and gingival
47	<u>fibroblasts⁹</u> may serve as a source of mesenchymal stem cells. ^{2,10} .
48	
49	The public is increasingly aware of this emerging science, and more parents are expressing interest in
50	harvesting/banking dental stem cells. While sources of dental stem cells are readily accessible, those
51	cells must be secured and stored properly to maintain the potential to proliferate and differentiate ^{11,12} .
52	Additionally, currently harvested dental stem cells are not very stable and have been known to form
53	tumors in vivo. ² More studies are recommended to assess the safety and efficacy of harvested dental
54	stem cells prior to initiating human clinical trials ² . The public is increasingly aware of this emerging-
55	science, and more parents are expressing interest in harvesting/banking dental stem cells.
56	
57	The American Academy of Pediatric Dentistry recognizes the emerging field of regenerative-
58	medicine and encourages dentists to follow future evidence based literature in order to educate-
59	parents about the collection, storage, viability, and use of dental stem cells with respect to autologous-
60	regenerative therapies.
61	
62	Policy Statement
63	• The AAPD recognizes that harvested dental stem cells is an emerging science which may
64	have application for oral health care.

65	•	The AAPD does not endorse the storage or use of harvest dental stem cells as there are no
66		treatments available using harvested dental stem cells in humans.
67	•	As the technology continues to evolve, the process of procurement of dental stems cells
68		should be accomplished only with deliberate integrity and appropriate informed consent to
69		assure the highest ethical standards and quality of outcomes.
70		
71	<u>Refe</u>	rences
72	<u>1.</u>	Conde MC, Chisini LA, Demarco FF Nor JE, Casagrande L, Tarquinio SB. Stem cell-based
73		pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a
74		systematic review of literature. Int Endod J, 2016. 49(6): p. 543-50.
75	<u>2.</u>	Hynes K, Menichanin D, Bright R, Ivanovski S, Hutmacher DW, Gronthos S, Bartold PM.
76		Induced Pluripotent Stem Cells: A New Frontier for Stem Cells in Dentistry. J Dent Res,
77		<u>2015. 94(11): p. 1508-15.</u>
78	<u>3.</u>	Yang J, Yuan G, Chen Z. Pulp Regeneration: Current Approaches and Future Challenges.
79		Front Physiol, 2016. 7: p. 58.
80	4.	Govindasamy V, Ronald VS, Abdullah AN, Nathan KR, Ab Aziz ZA, Abdullah M, Musa S,
81		Kasim NH, Bhonde, RR. Differentiation of dental pulp stem cells into islet-like aggregates. J
82		Dent Res, 2011. 90(5): p. 646-52.
83	5.	Kadar K, Kiraly M, Porcsalmy B, Molnar B, Racz GZ, Blazek J, Kallo K, Szabo EL, Gera I,
84		Gerber G, VArga G. Differentiation potential of stem cells from human dental origin -
85		promise for tissue engineering. J Physiol Pharmacol, 2009. 60 Suppl 7: p. 167-75.
86	6.	Nourbakhsh N, Soleimani M, Taghipour Z, Karbalaie K, Mousavi SB, Talebi A, Nadali F,
87		Tanhaei S, Kiyani GA, Nematollahi M, Rabiei F, Mardani M, Bahramiyan H, Torabinejad M,
88		Nasr-Esfahani MH, Baharvand, H., Induced in vitro differentiation of neural-like cells from
89		human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol, 2011. 55(2): p. 189-95.
90	7.	Nishino Y, Yamada Y, Ebisawa K, Nakamura S, Okab, K, Umemura E, Hara K, Ueda M.
91		Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the
92		possibility of novel cell therapy. Cytotherapy, 2011. 13(5): p. 598-605.
93	<u>8.</u>	Miyoshi K, Tsuji D, Kudoh K, Satomura K, Muto T, Itoh K, Noma T. Generation of human
94		induced pluripotent stem cells from oral mucosa. J Biosci Bioeng, 2010. 110(3): p. 345-50.
95	<u>9.</u>	Wada, N., et al., Induced pluripotent stem cell lines derived from human gingival fibroblasts
96		and periodontal ligament fibroblasts. J Periodontal Res, 2011. 46(4): p. 438-47.

97	10.	Eslaminejad MB, Vahabi S, Shariati M, Nazarian H, In vitro Growth and Characterization of			
98		Stem Cells from Human Dental Pulp of Deciduous Versus Permanent Teeth. J Dent (Tehran),			
99		2010. 7(4): p. 185-95.			
100	11.	Perry BC, Zhou D,Wu X,Yang FC, Byers MA, Chu TM, Hockema JJ, Woods Ej, Goebel			
101		WS. Collection, cryopreservation, and characterization of human dental pulp-derived			
102		mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods, 2008.			
103		14(2): p. 149-56.			
104	12.	Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The Comparison of the			
105		Immunologic Properties of Stem Cells Isolated from Human Exfoliated Deciduous Teeth,			
106		Dental Pulp, and Dental Follicles. Stem Cells Int, 2016. 2016: p. 4682875.			
107					
108	Eslami	nejad MB, Vahabi S, Shariati M, Nazarian H. In vitro growth and characterization of stem-			
109	cells from human dental pulp of deciduous versus permanent teeth. J Dent (Tehran) 2010:7(4):185-				
110	95.				
111	Govind	asamy V Ronald VS Abdullah AN at al Differentiation of dental pulp stem cells into islat			
112	like aggregates. I Dent Res 2011:00(5):626-52				
112	iike agg	regates. 5 Dent Res 2011,70(5).020-52.			
113	Kadar K, Kiraly M, Porcsalmy B, et al. Differentiation potential of stem cells from human dental-				
114	origin Promise for tissue engineering. J Physiol Pharmacol 2009;60 (suppl 7):167-75.				
115	Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED)				
116	enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011;13(5):598-605.				
117	Nourbakhsh N. Soleimani M. Taghipour Z. et al. Induced in vitro differentiation of neural-like cells				
118	from human exfoliated deciduous teeth derived stem cells. Int J Dev Biol 2011;55(2):189-95.				
119	Perry BC. Zhou D. Wu X. et al. Collection cryopreservation and characterization of human dental				
120	pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods-				
121	2008;14(2):149-56.				
100	,				
177					

123