Current status of SnF₂ as an antiplaque agent

Norman Tinanoff, D.D.S., M.S.
Donald B. Weeks, D.M.D.

Although it is evident that fluorides are effective in reducing dental caries, the manner in which these compounds accomplish this is still not fully understood. The concept that fluoride decreases the solubility of enamel through the formation of fluorapatite, thus protecting against bacterial acid production, has long been accepted. What defies explanation is how such small amounts of fluorapatite formed by the enamel-fluoride interaction can account for the relatively large degree of caries reduction which occurs from either topical or systemic fluorides.

The apparent paradox has spurred investigations into possible antimicrobial mechanisms which could explain how fluoride reduces caries. The purpose of this review is to describe the findings concerning the plaque-altering properties of fluoride, and specifically stannous fluoride, which have recently been noted to have important antiplaque properties.

The effect of sodium fluoride on bacterial metabolism has been known for some time and is relatively well understood. Inhibition of acid production by salivary and plaque bacteria in vitro has been demonstrated with less than 1 ppm F⁻. Furthermore, plaque collected from subjects living in fluoridated areas has shown smaller increases in acid production with sucrose than has plaque from subjects living in nonfluoridated areas. These findings may be explained by the observation that fluoride alters the bacterial enzyme, enolase, which is essential for the degradation of simple sugars to lactic acid and is also essential for the transport of sugars across the bacterial cell membrane. The inactivation of enolase is the result of fluoride binding with the magnesium component of this enzyme. Fluoride ions acting in this manner could reduce bacterial-acid production and might account for some of the caries inhibition noted for this agent.

While inhibition by fluoride of acid production is not controversial, there is less clear evidence concerning the ability of sodium fluoride to reduce the quantity of plaque. Decreases in the amount of plaque polysaccharide have been reported in vitro with 10 and 70 ppm F⁻ as NaF, yet in vivo studies showing the effect of fluoride on the quantity of plaque have provided only modest results. Plaque collected from subjects living in optimally fluoridated or highly fluoridated areas has been found to contain slightly less extracellular polysaccharide or slightly less visual plaque, respectively, compared to plaques collected from areas deficient in fluoride. Birkland has shown also that a weekly rinse of 0.2% NaF (1000 ppm F⁻) produced a small but significant reduction in plaque dry weight. However, intensive fluoride therapy, i.e., frequent applications of concentrated solutions of NaF, has provided better results. Loesche et al. besides demonstrating lower plaque and gingivitis scores in subjects frequently applying 1.23% acidulated phosphate fluoride topically, showed also that the number of Streptococcus mutans relative to Streptococcus sanguis in plaque was also lowered.

The earliest reference to the effect of SnF₂ on oral flora was that reported by Lilienthal in 1956. He found that 0.01% SnF₂ (25 ppm F⁻) inhibited acid formation by saliva and salivary sediments in vitro. Dramatic plaque-reducing properties of stannous fluoride were later observed in 1959 when König noted plaque inhibition in rats when 0.1% SnF₂ (250 ppm F⁻) was applied once a day for 35 days to rat molars. SnF₂ was again noted in 1976 to reduce the number of bacteria adherent to enamel in vivo as observed by electron microscopy. Enamel cylinders embedded in a maxillary Hawley appliance were worn by one subject for 2 or 7 days while performing various mouthrinse regimens. Since stannous fluoride reduced bacterial colonization on enamel but sodium fluoride did not, the antiplaque effect found in this limited study was believed not due solely to the fluoride ion. Subsequently, rats inoculated with Actinomyces viscosus and S. mutans were reported to have a 71% reduction in plaque when treated with SnF₂.
Fig. 1. Scanning electron micrographs from surface enamel placed in a Hawley appliance and worn in one subject's mouth for 2 days. Amorphous pellicle as well as reduced deposits of bacteria are present when SnF$_2$ (100 ppm F$^-$) is used as a mouthrinse once a day (A). When SnF$_2$ is used twice a day, pellicle covers the enamel, but no bacteria are apparent.

Recent studies have established definitely that SnF$_2$ affects the oral flora in man. Subjects using SnF$_2$ mouthrinse have demonstrated a reduction of bacterial acid production in salivary samples17 and in intact dental plaque.18 SnF$_2$ at high concentrations (1250 ppm F$^-$) used daily as a mouthrinse was also found to decrease by 99% the number of bacteria per milliliter of saliva while NaF at the same concentration had little influence on salivary bacteria.19 Other studies have revealed a 74 to 99% reduction in the number of microorganisms in dental plaque from subjects using relatively dilute SnF$_2$ mouthrinse twice daily.20

The ability of SnF$_2$ to reduce plaque formation has been impressively demonstrated in several clinical trials. One single application of 8% SnF$_2$ was found to reduce plaque weight and visual plaque scores on 27 children.22 Another clinical study has found that toothpastes which contain SnF$_2$ have antiplaque properties.23 In an experimental series in which 12 subjects used 0.2 or 0.3% SnF$_2$ mouthrinse twice daily for 4 days, plaque inhibition by SnF$_2$ was comparable to that by chlorhexidine. In a second experiment in the same report, five students who discontinued oral hygiene for 3 weeks rinsed with sucrose for 1 week to augment plaque formation and then rinsed with SnF$_2$ for 2 weeks. The mean Plaque Index score was a low 0.24 for this group after the third week.24 Another clinical trial on 27 subjects who used 0.1% SnF$_2$ or a placebo mouthrinse twice a day for 5 days has shown significant reductions in visual plaque score, plaque wet weight, number of bacteria per milligram of plaque, and total number of bacteria collected from six representative teeth. In this study, the total number of bacteria was considered to be the best index for plaque reduction, and SnF$_2$ mouthrinses reduced plaque by 50% using this criterion.25 Subsequent studies using the same experimental design and the same plaque indices, however, have found that 0.1% SnF$_2$ was not nearly as effective as 0.2% chlorhexidine when these agents were compared in a twice-daily mouthrinse regimen.26

The mechanisms responsible for alteration of plaque formation by SnF$_2$ are, as yet, not well understood. Some information on the way SnF$_2$ reduces plaque has been derived from observations by electron microscopy of the enamel cylinders worn in vivo during mouthrinse procedures. When SnF$_2$ was used as a mouthrinse once daily for 2 days, the number of bacteria on the enamel appeared greatly reduced; when SnF$_2$ was used twice daily, the bacterial colonization was essentially eliminated (Fig. 1). Rinsing for 7 days with SnF$_2$ produced a thick amorphous pellicle on the enamel with the bacteria generally appearing as a nonaggregated layer on the enamel (Fig. 2). Based on
these observations by electron microscopy, it has been postulated that the variation in colonization noted with SnF₂ may be due in part to altered adhesion of bacteria to enamel or altered cohesion of bacteria.¹⁵

Some authors have suggested that the tin component of SnF₂ may be responsible for the antiplaque properties. The stannous ion conceivably could compete with calcium for acidic groups on bacterial surfaces or acidic groups on teeth and thus inhibit plaque formation.²⁴ ²⁷ There is some evidence also that a cell wall component in Gram-positive bacteria, lipoteichoic acid, may be the “glue” which binds bacteria to tooth surfaces,²⁸ ²⁹ and divalent cations (i.e., Sn²⁺) possibly may interact with this highly negatively charged polymer thereby changing the surface potential of bacteria.²³ ³⁰ Demonstration of the divalent cation effect was noted in a clinical study in which mouthrinses comprised of either aluminum, zinc, and magnesium or stannous salts reduced plaque formation.³¹ However, divalent cations cannot explain entirely the substantial antiplaque properties of SnF₂. Stannous chloride mouthrinse equimolar to SnF₂ was noted to have some effect on plaque in the in vivo plaque model system previously mentioned, but the reduction in plaque was not as dramatic as that found with SnF₂.¹⁵ Other studies have observed also that SnCl₂ is not as effective as SnF₂ in reducing the amount of plaque which adheres to enamel in vivo³¹ or in vitro,³² or in inhibiting pH changes in dental plaque.³³ One hypothesis mentioned for the decreased effectiveness of SnCl₂ is that it rapidly hydrolyses in water.³³ It is possible also that since fluoride is known to become bound to plaque bacteria³⁴ as well as to enamel,³⁵ the fluoride ions in SnF₂ may enhance the retention of tin in plaque and thereby make this agent more effective as an antiplaque agent.

The possibility that SnF₂ may depress selectively specific organisms responsible for caries formation has been examined also in reports by Keene et al.³⁶ ³⁷ Interproximal tooth sites in humans were tested for presence or absence of S. mutans after 4 days of twice-daily flossing in conjunction with topical application of 10% SnF₂ (24,000 ppm F⁻) or saline. It was noted that there was a significantly greater change of positive S. mutans sites to negative S. mutans sites in the SnF₂-treated group.³⁶ The results reported, however, may not represent truly a selective action against S. mutans but, rather, a generalized plaque depression since other studies have not shown any change in the ratios of organisms due to SnF₂.²⁰ ²¹

To date, the studies that have examined the plaque-inhibitory effect of SnF₂ have been too short in duration to observe changes in gingival health in humans,²⁵ ³⁸ and a question still remains as to the
effect of topical SnF₂ on gingivitis. Two studies in dogs have shown reductions in gingival inflammation with intermittent SnF₂ rinses. Furthermore, SnF₂ has been reported to be the most effective fluoride agent against some known periodontopathic microorganisms. Clinical trials on human populations utilizing the experimental gingivitis models need to be conducted. If such trials demonstrate that SnF₂ reduces gingivitis, then further studies should be undertaken to examine long-term effects of SnF₂ on the development of periodontal disease. Long-term studies need to be performed also to observe changes in the oral flora and any possible side effects caused by the drug. The use of disclosing dyes to visualize plaque area, however, does not appear appropriate in studies with SnF₂ since nonbacterial deposits (Fig. 3) accumulate readily when teeth are exposed to SnF₂, and the deposits may look similar to plaque.

Based on its demonstrated plaque inhibition, SnF₂ may be useful for suppression of plaque following periodontal surgery. The advantages of maintaining oral surgical sites plaque-free have been documented, and the ability of one antiplaque agent (chlorhexidine) to improve periodontal surgical results has been well established. Comprehensive clinical trials are needed to document the clinical impression that SnF₂ rinses improve healing following periodontal surgery.

Since clinical usage of SnF₂ preceded the strict drug guidelines now in effect in the United States, this agent has not gone through rigorous trials to establish safety. However, the only reported side effect in its many years of use is staining of teeth (Fig. 4). This
stain, however, is said to be less tenacious than that attributed to chlorhexidine, and in most cases, it is easily removed by a professional prophylaxis.24 There is some objectionable taste associated with SnF\textsubscript{2} yet, when flavored commercial products are diluted to mouthrinse concentrations, the astringent metallic taste is minimal. Also important to remember is that SnF\textsubscript{2} has poor stability as an aqueous solution, and therefore, it should be used soon after it is mixed with water. Commercial products most often have a glycine base, and consequently, they have an indefinite shelf life before they are diluted with water.

It is well established that SnF\textsubscript{2}, as well as other fluoride agents, is effective in caries prevention. The development of a mouthrinse capable of reducing plaque formation, while at the same time increasing the resistance of teeth to demineralization, may constitute an important advance in prevention of both caries and periodontal disease.

References

Dr. N. Tinanoff is Assistant Professor in the Department of Pediatric Dentistry at the University of Connecticut Health Center. Requests for reprints should be addressed to Dr. N. Tinanoff, Department of Pediatric Dentistry, University of Connecticut Health Center, Farmington, Connecticut 06032.

Dr. D. B. Weeks completed a general practice residency program at North Shore University Hospital and received a certificate in Periodontics from the University of Connecticut in 1978. He is presently in private practice in New Haven.