The use of fluoride-containing toothpastes in young children: the scientific evidence for recommending a small quantity
Dorothy T. Y. Pang, BDS, DDS, MS William F. Vann, Jr., DMD, MS, PhD

Introduction

The prevalence of dental fluorosis has increased since the 1930s in both fluoridated and nonfluoridated United States communities because of increased exposure to systemic fluorides.1-4 Although the increase in dental fluorosis is of the mild and very mild categories and poses no immediate health problem, more severe levels are of esthetic concern and may threaten the continued use of systemic fluorides to prevent dental decay. Indeed, the severity of dental fluorosis in a few isolated populations already has become a public concern (see footnote).5-7 Considering these factors, it is imperative that all possible efforts are undertaken to control the prevalence and severity of dental fluorosis within the range of public acceptance.

In March, 1991, the National Institute of Dental Research sponsored an international workshop, Changing Patterns of Systemic Fluoride Intake. In this meeting, fluoride and clinical science researchers discussed issues relating to the safe and effective use of systemic and topical fluorides. Workshop participants agreed that in addition to drinking water, fluoride supplements, and dietary sources, the inadvertent ingestion of toothpaste by young children could be a source of systemic fluoride.

It is a common practice in the dental profession to recommend the use of a small quantity or a pea-size amount of toothpaste for young children. The rationale for this recommendation is to minimize the inadvertent ingestion of fluoride-containing dentifrices, which theoretically could lead to increased systemic fluoride intake. The purpose of this article is to discuss the relationship between fluoride-containing dentifrices and dental fluorosis; in particular, we will examine the scientific evidence for recommending the use of a small amount of fluoridated toothpaste for children.

Literature Review

For dental fluorosis to result, the increased systemic exposure must occur at the age when the enamel is forming.8, 9 The maturation phase of enamel formation is the stage vulnerable to increased systemic fluoride intake. Chronic high doses of fluoride at this stage can cause enamel hypomineralization.10, 11 For the maxillary incisors, the critical period seems to be 22-25 months of age, but the risk for dental fluorosis in the incisors may persist for 36 months beyond this period.12 Fur-
amount of 25% swallowed. Because most toothpastes on the market contain 1000–1100 ppm F, it is reasonable to suggest that an average of about 0.25 mg of fluoride will be ingested by children during each brushing. A child who brushes twice a day may ingest 0.5 mg of fluoride from toothpaste alone.

A recent study by Maurice and Levy revealed that a large majority of preschool children seemed unable to expectorate effectively. Whitford made a similar observation and attributed this to the inadequate development of the swallowing reflex in younger children. Although there is no evidence in the literature that supervised brushing can reduce the amount of toothpaste ingestion among young children, parental supervision in limiting the quantity of toothpaste dispensed is a common-sense approach to reducing inadvertent fluoride ingestion.

The fluoride in toothpastes is readily bioavailable, meaning that virtually all fluoride ingested from toothpaste is absorbed. It has been shown that ingesting 0.6 g of toothpaste containing 1000 ppm fluoride can lead to an increase in the plasma fluoride level comparable to that attained after swallowing 0.5 mg of sodium fluoride tablets. Polishing agents such as calcium phosphate and calcium carbonate have been shown to inhibit fluoride absorption to some extent; however, silica, which is present in most toothpastes available today, has been shown not to affect the absorption of fluoride from toothpaste ingestion.

The optimal daily allowance of fluoride from all sources is 0.05–0.07 mg/kg of body weight; any amount exceeding this may cause dental fluorosis. Thus, a 2-year-old child at 12-kg body weight should not exceed 0.8 mg/day. Ophaug estimated the dietary fluoride intake of a 2-year-old child to range from 0.2 to 0.6 mg/day, depending on the fluoride level in the drinking water. Hence, this child may ingest 0.2 to 0.6 mg of fluoride per day from dietary sources, plus 0.5 mg from fluoridated toothpaste. This total of 0.7–1.1 mg of fluoride per day may exceed the maximum allowance of 0.8 mg/day for the 2-year-old child. When intake from other systemic sources is considered, such as fluoride supplements and beverages, there is an even greater chance that young children may exceed their optimal daily fluoride allowance.

In a recent review of the literature, Ripa made a conservative estimate of 0.13 mg of fluoride intake from toothpaste ingestion per brushing in preschool children. This is probably an underestimation because he assumed an average of only 0.5 mg of toothpaste and the use of a child-size toothbrush in each brushing. Nevertheless, he concluded that toothpaste ingestion could contribute to total systemic fluoride intake and suggested guidelines that included the use of only a pea-size amount of toothpaste for young children to minimize inadvertent ingestion.

Several epidemiologic studies have investigated the association between toothpaste use and prevalence of dental fluorosis. The early epidemiologic studies demonstrated a lack of association, but these have been criticized for the lack of statistical power to detect a relationship because the sample sizes were small and the prevalence of dentifrice use was high. Some early studies did not control for other confounding variables. Often, these studies were designed primarily to investigate other systemic sources, such as fluoride supplements and water fluoridation. The more recent epidemiologic studies have found an association between toothpaste use and the prevalence of dental fluorosis. The early epidemiologic studies have investigated the relationship between toothpaste use and prevalence of dental fluorosis. The early epidemiologic studies have investigated the relationship between toothpaste use and prevalence of dental fluorosis.
are inconclusive. Because there are no data to quantify the optimal amount of toothpaste to be dispensed in each brushing, the recommendation of using only a pea-size amount for young children is prudent and scientifically sound.

Dr. Pang is clinical assistant professor, Department of Pediatric Dentistry, University of California, San Francisco, CA, and Dr. Vann is professor and chairman of the Department of Pediatric Dentistry, University of North Carolina School of Dentistry, Chapel Hill, NC. Reprint requests should be sent to: Dr. William F. Vann, Jr., Department of Pediatric Dentistry, University of North Carolina, School of Dentistry, CB #7450, Chapel Hill, NC 27599-7450.


Future Annual Session Sites

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 27–June 1, 1993</td>
<td>Hyatt Regency Crown Center and Westin Crown Center, Kansas City, MO</td>
</tr>
<tr>
<td>May 26–31, 1994</td>
<td>The Walt Disneyworld Dolphin, Orlando, FL</td>
</tr>
<tr>
<td>May 24–28, 1996</td>
<td>Chicago Marriott Hotel, Chicago, IL</td>
</tr>
</tbody>
</table>