Identification of Candida dubliniensis in a study of HIV-Seropositive pediatric dental patients

Diana M. Brown, DDS Mary Ann Jabra-Rizk, BS, PhD William A. Falkler, Jr., PhD A. A.M. A. Baqui, MD, PhD Timothy F. Meiller, DDS, PhD

Abstract

Purpose: The combination of an immature immune system and suppressed cellular immunity in children with HIV infections provides optimal conditions for rapid disease progression. As a result, pediatric AIDS has become a major epidemiological challenge. Oral fungal colonization remains one of the most common opportunistic infections observed in both adult and pediatric HIV infected patients. Although Candida albicans is the most frequently isolated opportunistic fungal species, a recently characterized Candida species, C. dubliniensis, has gained considerable attention due to its almost exclusive association with HIV-seropositive individuals. The purpose of this study was to prospectively screen for the presence of C. dubliniensis among pediatric HIV+ patients.

Methods: Oral samples taken from twenty-seven children were cultured for the presence of yeast. All positive yeast isolates obtained were screened for the presence of C. dubliniensis by use of tests for germ tube and chlamydospore production, detection of inability to grow at 45°C, by colony color on CHROMagar Candida medium, coaggregation with Fusobacterium nucleatum ATCC 49256 and by the results of sugar assimilation testing with the API 20C AUX yeast identification system.

Results: Among the 27 patients tested, 3 patients were found to harbor C. dubliniensis, one of which also grew C. glabrata; 12 patients were colonized with C. albicans, while the remaining 12 patients were negative for yeast. Identification of the three C. dubliniensis isolates was genetically confirmed by electrophoretic karyotyping. All three C. dubliniensis isolates were found to be susceptible to fluconazole (MIC ≤0.25 μg/ml).

Conclusions: These results confirm the presence of this novel species in a pediatric HIV-seropositive population and support the need for further investigation into the prevalence and pathogenesis of C. dubliniensis. (Pediatr Dent 22:234-238, 2000)
Materials and methods

Patient population
Twenty-seven pediatric HIV-seropositive patients managed at the University of Maryland Dental School, were evaluated for the presence of *C. dubliniensis*. Although culturing for potential fungal colonization maybe part of normal dental care, informed consent was obtained from the parents or legal guardians of each child participating in this study. Of those pediatric patients sampled, 68% were females and 32% were males, with an age range of 26 months to 13 years. For isolation of *Candida* species oral samples were obtained from the mid-dorsum of the tongue with a sterile swab, streaked on Sabouraud dextrose agar (SDA; Difco Laboratories, Detroit, MI) plates and incubated at 37 °C for 48 to 72 h. Colonies growing on original cultures were tested for germ tube formation, chlamydospore production and ability to grow at 45 °C.

Yeast identification
Isolated yeast colonies were streaked on T O C agar (Tween 80-oxgall-caffeic acid, REMEL, Lenexa, KS), and plates were incubated at 37 °C for 3 h for evaluation of germ tube formation, followed by incubation at room temperature for 2 to 3 days in the dark, to promote the production of chlamydospores, hyphae and pseudohyphae. Germ tube and chlamydospore production was observed using phase contrast light microscopy.

Isolates that met these initial criteria were then plated on a chromogenic differential medium and incubated at 37 °C for 48 h. The isolates were further characterized for substrate assimilation profiles using the API 20C system (bioMérieux Vitek, Inc., Hazelwood, MO).

CoAg Assay
Isolates were grown at 37 °C for 24 h on SDA and 10% yeast suspensions were prepared in CoAg buffer as described previously. The CoAg ability of the 3 *C. dubliniensis* isolates with the anaerobic oral bacteria *F. nucleatum* ATCC 49256 was tested by mixing aliquot of yeast suspension with bacterial suspension and checked visually for coaggregation. *Candida dubliniensis* type strain CD36 and *C. albicans* ATCC 18804 were used as positive and negative controls, respectively.

Electrophoretic Karyotyping (EK)
All isolates meeting the phenotypic criteria of *C. dubliniensis*, along with *C. albicans* ATCC 18804 and *C. dubliniensis* CD 36 as controls, were subjected to electrophoretic karyotyping of intact chromosomal DNA using pulsed-field gel electrophoresis. Intact yeast DNA was prepared according to the method of King et al., as described previously.

Fluconazole susceptibility testing
A broth macrodilution susceptibility assay was carried out according to the method outlined in the National Committee for Clinical Laboratory Standards (NCCLS) M 27-A reference method. The MIC value at 48 h was used to determine resistance or susceptibility. Interpretation of results was performed according to the guidelines of Rex et al., as follows: an MIC at 48 h of <8 ug/ml = susceptible, an MIC of 16-32 ug/ml, dose-dependent susceptible; and an MIC >64 ug/ml, resistant.

Results
Phenotypic characterization
Of the 27 yeast isolates from HIV-seropositive pediatric patients obtained by culture of clinical specimens, 3 isolates grew well at 37 °C but failed to grow at 45 °C on SDA whereas *C. albicans* ATCC 18804 grew equally well at both temperatures. These 3 isolates were confirmed to be germ tube positive and to produce abundant chlamydospores with the characteristic...
triplet or pair arrangement at the end of short, hyperbranching hyphae. The C. albicans reference strains also produced germ tubes but fewer, single chlamydospores on longer hyphae (see Fig 1 for typical patterns for patient isolates compared to C. albicans strain). The color of the colonies from the three patient isolates grown on CHROM agar Candida medium was comparable to the characteristic dark green of C. dubliniensis type strain CD 36, unlike the blue-green colonies formed by C. albicans ATCC 18804 colonies, used as a control. The sugar-assimilation profiles obtained for the three isolates with the API 20C AUX yeast identification systems were typical of C. dubliniensis.

CoAg Assay
Visual coaggregation was observed with the three presumptive C. dubliniensis (37°C-grown) patient isolates showing a 4-reaction with F. nucleatum, whereas no coaggregation occurred with the 37°C-grown C. albicans ATCC strain.13

Electrophoretic karyotype analysis
Eight to nine DNA bands ranging from ~1.9 Mb to <1 Mb were separated by the pulsed-field gel electrophoresis procedure applied to the three isolates of presumptive C. dubliniensis and reference strain CD 36. Electrophoretic karyotyping patterns for all of the three suspected C. dubliniensis isolates revealed the presence of a chromosome-sized band of size <1 Mb.10 This band was not seen in the seven bands (1–1 Mb) observed with the ATCC C. albicans reference strain.

Fluconazole susceptibility testing
The results of fluconazole susceptibility testing for the three isolates presumptively identified as C. dubliniensis showed that all three isolates were sensitive with MIC <0.25 μg/ml.

Characteristics of the patients positive for C. dubliniensis
As part of the normal protocol for initial evaluation of HIV+ pediatric patients entering the dental program at the University of Maryland Dental School 27 consecutive patients were evaluated with fungal surveillance cultures. Of these 27 patients, 3 patients were found to be harboring Candida dubliniensis.

Case #1 was a 5-year 2-month old female positive with HIV since soon after birth. Her current CDC classification was C3 with severe immunosuppression. While the viral load was greater than 10,000 at the time of the oral surveillance culture, CD 4 count was within the range of normal at approximately 1,000 cells. No history of oral candidiasis was noted in the patient's medical work up. The mother was a previous intravenous drug abuser and was deceased soon after the child's birth. The child was born with signs of addiction. The patient was currently on a nucleoside analog, a protease inhibitor and a nonnucleoside analog. The mother had had a previous history of oropharyngeal candidiasis and had been treated with fluconazole although the child never had a documented episode.

Case #2 is a 10-year 5-month old female with a positive diagnosis of HIV at approximately 9 months of age. One brother also had a positive history of HIV. The patient was also CDC class C3 with severe immunosuppression. Viral load was in the undetectable range and the CD 4 count was currently 646. The patient was on triple drug combination therapy including a protease inhibitor, nucleoside analog and a nonnucleoside drug. The brother with whom the child lived had been diagnosed with oropharyngeal candidiasis and was treated routinely with fluconazole. The patient had no current or past history of fungal colonization. The mother was deceased and the child was living in a foster home with her brother.

Case #3 is a 6-year 6-month old male diagnosed soon after birth as being HIV+. Current CDC classification was C3 with severe immunosuppression. Viral load was greater than 250,000. CD 4 count was 115. The patient was currently on antibiotics including dapsone and anti-retrovirals, including 2 nucleoside analogs, 2 nonnucleoside analogs and a protease inhibitor. In addition the patient was on prednisone and clotrimazole for treatment of chronic oral and esophageal fungal infections, as evidenced by patchy pseudomembranous and erythematous oral lesions. The patient had previously been treated in 1995 and 1996 with fluconazole and was considered to be a chronic carrier of fungus. The mother was deceased and the child was living in foster care.

Discussion
In this study, the presence of Candida species with characteristics consistent with those of C. dubliniensis was observed in three HIV-seropositive pediatric dental patients with various manifestations of AIDS. Overall oral health status of these patients was poor. Cultures from the 3 patients varied in amount of fungal growth, from light to medium pure growth of C. dubliniensis to mixed heavy growth of C. dubliniensis with other Candida species. In this investigation, C. dubliniensis was identified by cultural methods, germ tube and chlamydospore production, lack of growth at 45°C and CoAg assay. In addition, the API 20C sugar assimilation profiles were consistent with C. dubliniensis and finally the EK, with a small molecular weight chromosome, provided a profile consistent with the C. dubliniensis reference strain. Although the three patient isolates were found to be susceptible to fluconazole, studies showed that fluconazole resistance occurs in C. dubliniensis clinical isolates and that C. dubliniensis is capable of rapidly developing stable fluconazole resistance in vitro.11,12 It could be postulated, therefore, that C. dubliniensis may emerge as a resistant organism when C. albicans is treated successfully with fluconazole.

Among the many manifestations of AIDS, oral candidiasis often remains the initial clinical marker of the disease and a predictor of further opportunistic infections.18 Similarly in children, oral candidiasis has been strongly associated with decreasing CD 4 counts and hence is considered an AIDS defining illness, prognostic of short term survival.19,21 Children with HIV, however, present an unfortunate situation that predisposes them to a variety of opportunistic infectious diseases that often take on a more rapid and progressive form.22 Reports have estimated that 2% of HIV-infected individuals in the United States and 15-20% of the cases in developing countries, are children under the age of 15.23,24 with fungal colonization ranging from 26% to 72% in prevalence.23,25 Although most children experience oral candidiasis to some degree during the first six months after birth, in HIV-infected children, candidiasis is more persistent, more severe and more difficult to treat with occurrences well past infancy.21,26
Oral candidiasis takes on many forms such as, acute pseudomembranous, chronic atrophic or hypertrophic, erythematous, hyperplastic or angular cheilitis. Although the gross appearance of pseudomembranous candidiasis is readily identifiable by the white plaques, it is often difficult to differentiate some of the other oral lesions that may resemble any number of conditions.

In addition, pharyngeal candidiasis, a more serious condition, may not be readily visible or accessible and may be overlooked upon clinical examination. Recently, a case report implicated C. dubliniensis as a pathogen in linear gingival erythema in a pediatric HIV-seropositive individual, while another report clinically documented two cases of C. dubliniensis candidemia in two pediatric patients with chemotherapy-induced neutropenia and bone marrow transplantation. Since confirmation of the diagnosis of candidiasis requires at least cytologic testing, it is suspected that the prevalence of candidiasis in children may be considerably underestimated. Due to the importance of candidiasis in defining AIDS, it is imperative to look carefully for indications of the presence of candidal infection and research into which forms of candidiasis are more often encountered in HIV+ children is warranted.

The future is uncertain for HIV+ individuals. Advances in understanding candidiasis can provide some understanding of the pathogenesis and virulence in immunocompromised populations and the effect of antifungal therapy. As HIV-infected children benefit from advances in antiviral therapy, so too may they benefit from reduction in the prevalence of candidiasis.

These 3 cases raise several questions regarding the prevalence of Candida dubliniensis in HIV+ pediatric patients. Although all of these patients were C3 AIDS classification based on history, only one presented at the time of culturing with the classical picture of advancing AIDS, that is, high viral load and low CD4 count. One other had high viral load only while the third had low viral burden and normal CD4 levels. This correlates well with the incidence of fungal infection in adults as previously reported. Of the 3 children, 2 had been on fluconazole on an as needed basis. The results from this study confirm the presence of C. dubliniensis among pediatric HIV-seropositive patients.

We would like to thank Seth Meiller and Jackie Kelley for their assistance in the preparation of this manuscript.

References

ABSTRACT OF THE SCIENTIFIC LITERATURE

CEPHALOMETRIC EVALUATION OF THE TWIN-BLOCK APPLIANCE

The purpose of this study was to compare an experimental group of patients who were treated with the Twin-block appliance to a matched group of control subjects using cephalometric data. There were 30 experimental subjects (14 males and 16 females). Their class II division I malocclusion was treated with the following 3 phases: 1) semi-rapid maxillary expansion and alignment of the maxillary arch, 2) correction of the class II relationship with the Twin-block appliance, 3) retention with a maxillary removable appliance with a very steep anterior bite plane. Each treatment case was individually matched to a control subject in regards to age, sex, and observation time. The author emphasized that the results were "compared to twice the method error to see if the treatment change was clinically significant". The following cephalometric measurements showed both statistically significant differences and also showed twice the method error. There was a significant reduction in overjet. The AN B angle was significantly reduced which was mainly the result of an increase in the SN B angle. "The upper incisor angulation was significantly reduced with the interincisal angle correspondingly increased".

Comments: There appears to be more variables in the treatment protocol than just the use of the Twin-block appliance. The author also used "semi-rapid maxillary expansion and alignment of the upper arch" and retention with "an upper removable appliance with a very steep anterior bite plane."