Evidence-based Assessment: Evaluation of the Formocresol Versus Ferric Sulfate Primary Molar Pulpotomy

Alex Loh, BDSc Polly O’Hoy, BDSc Xuan Tran, BDSc Rachael Charles, BDSc Andrew Hughes, BDSc Kotaro Kubo, BDSc Louise Brearley Messer, BDSc, LDS, MDSc, PhD, FRACDS, FICD

Drs. Loh, O’Hoy, Tran, Charles, Hughes, and Kubo were final year dental students at the time of this study, School of Dental Science, University of Melbourne, Melbourne; Dr. Messer is the Elsdon Storey Professor of Child Dental Health and Director of Graduate Studies, School of Dental Science, University of Melbourne, Australia.

Correspond with Dr. Messer at ljbm@unimelb.edu.au

Abstract

Purpose: Formocresol and ferric sulfate were evaluated as pulpotomy medicaments using evidence-based dentistry principles. Formocresol has been challenged as a potential carcinogen and mutagen, leading to consideration of ferric sulfate.

Methods: The PICOT statement was: (P) In human carious primary molars with reversible coronal pulpitis, (I) does a pulpotomy performed with ferric sulfate, (C) compared with formocresol, (O) result in clinical/radiographic success, (T) in time periods up to exfoliation? Relevant papers (n=894) were identified from databases and inclusion criteria were applied; 94 papers remained (randomized clinical trials [RCTs]=7; clinical trials [CTs]=28; case-control studies=14; opinions, cohort, and cross-sectional studies=4; reviews=22; irretrievable papers=19). Three RCTs and 10 CTs (total teeth: formocresol=753; ferric sulfate=90) were meta-analyzed; 1 RCT and 1 CT were tested for homogeneity (odds ratios; 95% confidence intervals); 3 RCTs and 10 CTs were examined by student’s t test.

Results: Clinical data indicated ferric sulfate was significantly more successful than formocresol (OR=1.95; CI=1.01-3.80). Radiographic data indicated no difference between medicaments (OR=0.90; CI=0.58-1.39). Medicaments did not differ with t-tests of clinical (P>.10) and radiographic (P>.50) data.

Conclusions: This evidence-based assessment concluded that, in human carious primary molars with reversible coronal pulpitis, pulpotomies performed with either formocresol or ferric sulfate are likely to have similar clinical/radiographic success. (Pediatr Dent. 2004;26:401-409)

KEYWORDS: EVIDENCE-BASED DENTISTRY, PRIMARY MOLAR, PULPOTOMY MEDICAMENTS, FORMOCRESOL, FERRIC SULFATE

Received February 27, 2004 Revision Accepted June 22, 2004
clinical guidelines utilizing the principles of EBP, now known as evidence-based dentistry (EBD), and clinicians are now placing increasing reliance on EBD.1

Conduct of research using EBD

Research using the principles of EBD utilizes the following 5 steps:

1. define the clinical research question;
2. search all available literature for evidence;
3. select (sieving) studies for possible inclusion;
4. appraise and rank the evidence in the selected studies and establish a final set of selected studies;
5. compile and analyze data from the studies to produce a statistically based conclusion.2

The first step defines the clinical research question of interest. Clinical questions need to be delineated clearly so that the intended audience is not confused by a vague topic. The acronym “PICOT” constructs the clinical research question to ensure that findings from the investigation provide a practical outcome. The letters define the 5 elements of the question as follows:

1. “P” represents the clinical problem;
2. “I” represents the intervention;
3. “C” represents a comparison;
4. “O” represents an outcome;
5. “T” represents time.

The second step involves a comprehensive search of available literature for all relevant studies and reports. Published papers and unpublished materials (eg, theses, conference proceedings, special reports, etc.) and materials in languages other than English are included. Strategies include searching journal databases, manual searching, checking reference lists, contacting researchers in the field, locating unpublished literature, and, using Internet search engines. Although much of the literature located may be unusable, this step is necessary to avoid literature bias. Peer-reviewed journals may be challenged as biased in only publishing papers that report a statistically significant result. Papers concluding no difference between treatments may, therefore, be harder to find but are relevant.

The third step involves selecting (sieving) all studies for inclusion in the statistical analysis. Inclusion criteria should reflect the requirements of the research question. It is advocated that more than one reviewer independently apply the inclusion criteria to each piece of evidence to eliminate human error and individual bias.3 All included papers are evaluated and ranked, with randomized controlled trials as the strongest evidence, followed in order by: (1) cohort studies; (2) case-control studies; (3) case series; (4) case reports; and (5) expert opinion.6,7

The fourth step requires extraction and synthesis of data from the selected papers. This is time consuming, as vigilant screening for numerical or factual errors is essential in deriving data. It may not be appropriate to combine some data from particular studies. Several statistical techniques, known collectively as meta-analysis in EBD, are used for evaluation of clinical results.7 L’Abbe plots may be used for a qualitative presentation of findings.8

The fifth and final step correlates findings of the aforementioned analyses with clinical relevance and makes clinical recommendations.

EBD’s value in dental practice

Practicing dentists can use EBD to assess recent literature for new advances and opinions, and to reject new or previously accepted techniques that do not have scientific support. While a literature review summarizes a body of knowledge, EBD provides an enhanced literature review that places importance on evidence based on sound research principles. Given the broad nature of EBD reviews, time-poor practitioners can also use it as a literature filter. Following sieving of papers, only a few may remain for inclusion in meta-analysis, even for an apparently widely researched topic. Consequently, conclusions from EBD are based on the few studies of sufficient merit for inclusion. Since EBD is based upon defined but arbitrary criteria, excluded articles of potential value will have no input into the EBD process. If no articles fulfill the inclusion criteria, EBD is unable to provide a conclusion other than stating the need for further research on the topic. The shift to the dental practice approach brought about by EBD effectively allows clinicians to review a large amount of literature and draw their own conclusions.9 This approach will often result in sound clinical decisions. Clinicians, however, must still determine the validity of the conclusions for themselves.

EBD’s application to selection of pulpotomy medicaments

The pulpotomy technique for preserving vital primary teeth with carious or mechanical pulpal exposures was established in the early 1920s,9 and has undergone little change. Recently, formocresol (FC) has been challenged as a carcinogen and a mutagen.10 Other medicaments such as calcium hydroxide and glutaraldehyde have been proposed.11 Teeth treated with calcium hydroxide, however, have shown internal resorption,12 and glutaraldehyde is not permitted as a therapeutic agent in some countries, including Australia.

More recently, ferric sulfate (FS) has been introduced as a pulpotomy medicament, and shows promise.13 It is unlikely, however, that prospective clinical trials would now be permitted by ethics committees to compare the relative efficacy of different medicaments. Therefore, maximum information must be obtained by an evidence-based approach, using defined criteria for literature selection, in order to make recommendations on medicaments.

The aims of this study were to:

1. use the principles of evidence-based dentistry to examine the relative efficacy of formocresol and ferric sulfate as pulpotomy medicaments in primary teeth;
2. produce recommendations on medicament selection for clinicians.
The PICOT statement used for the study was:
1. (P) in human carious molars with reversible coronal pulpitis
2. (I) does a pulpotomy performed with ferric sulfate
3. (C) compared with formocresol
4. (O) result in clinical/radiographical success
5. (T) in time periods up to exfoliation

The criteria for clinical/radiographical success were:
1. tooth remained asymptomatic until normal exfoliation;
2. successor tooth was unaffected;
3. no periapical pathology or internal resorption;
4. tooth did not exfoliate prematurely.

Methods

Searching the literature

Relevant literature was identified using 6 search engines as follows: (1) Medline Ovid Library; (2) Cochrane Library; (3) PubMed; (4) EMBASE; (5) Science Citation Index (SCI); and (6) System for Information on Grey Literature in Europe (SIGLE). Many related citations were found via the first 3 search engines; EMBASE, SCI, and SIGLE did not locate any relevant citations.

Therefore, the search was limited to Medline Ovid Library and Cochrane Library. The Boolean operator words AND and OR were used to narrow and broaden searches respectively; the operator NOT was avoided, due to the risk of excluding relevant articles. The same search strings and keywords (including both spellings of ferric sulfate/sulphate) were applied to both search engines, with results limited to: (1) human studies; and (2) written in English. The search generated a total of 1,944 citations (Tables 1 and 2).

Preliminary sieve

Preliminary sieving of these papers was conducted by examining the paper title and selecting for inclusion only those papers fulfilling the following criteria: (1) studies addressing FC and/or FS related to pulpotomy, and (3) performed on primary (deciduous) molar teeth. The sieving resulted in a total of 894 papers (Table 2).

Secondary sieve

Secondary sieving was more specific, focussing more precisely on the PICOT statement by adding 2 further criteria to limit the search to:
1. actual investigations/experiments;
2. study duration for individual teeth up to exfoliation.

Consequently, papers were included which were reviews, full reports, or research abstracts of prospective, retrospective, comparative, and/or radiographic studies. Excluded were case reports, letters, and studies irrelevant to the PICOT statement. This sieving resulted in a total of 104 papers (Table 2).

Appraisal and ranking of evidence

The 104 papers were examined by title and abstract (from the database) and classified tentatively by each pulpotomy medicament and study type according to the following ranked hierarchy of evidence: (1) experimental studies; (2) cohort studies; (3) case-control studies; (4) cross-sectional studies; (5) opinion articles; (6) reviews; and (7) undetermined studies due to current inadequate information. The distribution is shown in Tables 2 and 3. All experimental studies and undetermined studies (29+46=75 papers, Table 3) were sought, and 56 papers were retrieved, examined, and classified on the basis of title, abstract, and methodology. Ten papers were excluded, as they were found to not...
address primary (deciduous) molar teeth, and 19 papers were irretrievable (known hereafter as gray papers), resulting in 94 papers for further appraisal and ranking.

Studies were classified as clinical trials if the paper did not mention how subjects were recruited or how treatments were assigned, or if treatment assignment was nonrandom. The 94 papers at this second appraisal of evidence were ranked as follows: (1) randomized clinical trials; (2) clinical trials; (3) cohort studies; (4) case-control studies; (5) cross-sectional studies; (6) opinion articles; (7) reviews; and (8) gray papers (Table 3).

Detailed examination of the 7 randomized clinical trials and 28 clinical trials showed that:
1. Two randomized clinical trials were irrelevant to the PICOT statement.
2. Two randomized clinical trials were actually clinical trials, leaving 3 randomized clinical trials suitable for meta-analysis.

Due to this low number, the clinical trials were also considered for inclusion in the meta-analysis. Of the 30 clinical trials (28+2), 20 were deemed unsuitable (papers addressing glutaraldehyde, permanent teeth, histology, or papers irrelevant to the PICOT statement), leaving 10 clinical trials suitable for meta-analysis. A total of 13 studies (3 randomized clinical trials and 10 clinical trials) were then analyzed statistically via meta-analysis (Figure 1).

Application of meta-analysis

Meta-analysis includes direct and indirect techniques. In the direct technique, trials directly comparing test and control therapies are used. Homogeneity tests are used to describe consistency of outcomes between studies using chi-squared tests and odds ratios. The odds ratio (OR) is defined as:

\[
OR = \frac{P_1 / (1-P_1)}{P_2 / (1-P_2)}
\]

where \(P_1\) and \(P_2\) refer to event probability for the test and control therapies, respectively. Proportional data from 2 trials are combined into a common OR by pooling the success/failure values from both trials and applying this formula. A value exceeding 1 for the common OR implies
that the test therapy is significantly more successful than the control therapy; a common OR less than 1 implies that the control therapy is significantly more successful than the test therapy. The standard error (SE) for the common OR is computed to assess if it differs significantly from 1, within 95% confidence intervals (CI; assuming a normal distribution). L’Abbe plots are used for qualitative presentation of homogeneity, with the proportional successes plotted on the vertical axis for test groups and on the horizontal axis for control groups.

In the indirect technique, data are selected only from the relevant arms of the trials (part of the trial regarding either test or control therapies), pooled for analysis, and the student’s t test is applied to the means and standard deviations of the success rates. A diagonal line describes equivalent values of proportional success in both groups, aiding subjective comparisons. A point above the line implies that the test therapy is more successful; a point below the line implies that the control therapy is more successful.

Of the 13 trials with useable information for meta-analysis, 1 randomized clinical trial and 1 clinical trial were analyzed by the direct technique, and all 13 trials were analyzed by the indirect technique (Table 4). Data from trials were divided into clinical and radiographic data, and separate statistical analyses were conducted using the direct technique. Odds ratios (ORs) were used to compare the relative success of FS and FC. Data homogeneity was tested using the chi-squared test of consistency on the ORs for each trial. Since only 2 trials were compared, the power of these tests was low.

Data from the relevant arms (part of the trial regarding FS or FC) of all 13 trials were examined using the indirect technique. For example, the paper by Eidelmann et al described a 2-armed trial comparing mineral trioxide aggregate and FC as pulpotomy medicaments. For the indirect technique, data from the arm of the trial regarding FC was selected, but not that from the arm of the trial regarding mineral trioxide aggregate. For papers with 2 relevant arms (1 regarding FS and 1 regarding FC), both arms were included. Homogeneity tests were not conducted in the indirect technique, since a single arm of data does not provide comparative information.

Data from the relevant arms in all 13 trials were combined as an overall success rate for each medicament. All successful cases in each arm were summed, divided by the total number of cases in the same arm, and the percentage computed. The standard deviation of the overall success rate was computed for each medicament. Trials not including clinical data were excluded from computations of overall clinical success. Similarly, trials not including radiographic data were excluded from computations of overall radiographic success. The student’s t test was used to determine whether the means and standard deviations for the 2 groups of data differed significantly (using an alpha level of 0.05).

Results

Application of direct technique to 1 RCT and 1 CT

Table 4 shows the distribution of trials (in chronological order) with respect to type of trial, clinical and radiographic data, medicament, number of teeth studied, follow-up time period, and percent success.

<table>
<thead>
<tr>
<th>Experimental studies*</th>
<th>29</th>
<th>Randomized clinical trials (RCTs)</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort studies</td>
<td>1</td>
<td>Cohort studies</td>
<td>1</td>
</tr>
<tr>
<td>Case-control studies</td>
<td>9</td>
<td>Case-control studies</td>
<td>14</td>
</tr>
<tr>
<td>Cross-sectional studies</td>
<td>1</td>
<td>Cross-sectional studies</td>
<td>1</td>
</tr>
<tr>
<td>Opinion articles</td>
<td>1</td>
<td>Opinion articles</td>
<td>2</td>
</tr>
<tr>
<td>Reviews</td>
<td>17</td>
<td>Reviews</td>
<td>22</td>
</tr>
<tr>
<td>Undetermined*</td>
<td>46</td>
<td>Grey papers</td>
<td>19</td>
</tr>
</tbody>
</table>

*Papers examined further and reassigned in second ranking of evidence.

Table 3. Ranking of Evidence in Papers Addressing Formocresol or Ferric Sulfate (or Ferric Sulphate) as Primary Molar Pulpotomy Medicaments

<table>
<thead>
<tr>
<th>Hierarchy of evidence</th>
<th>Appraisal and first ranking of evidence (n=104 papers)</th>
<th>Hierarchy of evidence</th>
<th>Appraisal and second ranking of evidence (n=94 papers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental studies*</td>
<td>29</td>
<td>Randomized clinical trials (RCTs)</td>
<td>7</td>
</tr>
<tr>
<td>Cohort studies</td>
<td>1</td>
<td>Cohort studies</td>
<td>1</td>
</tr>
<tr>
<td>Case-control studies</td>
<td>9</td>
<td>Case-control studies</td>
<td>14</td>
</tr>
<tr>
<td>Cross-sectional studies</td>
<td>1</td>
<td>Cross-sectional studies</td>
<td>1</td>
</tr>
<tr>
<td>Opinion articles</td>
<td>1</td>
<td>Opinion articles</td>
<td>2</td>
</tr>
<tr>
<td>Reviews</td>
<td>17</td>
<td>Reviews</td>
<td>22</td>
</tr>
<tr>
<td>Undetermined*</td>
<td>46</td>
<td>Grey papers</td>
<td>19</td>
</tr>
</tbody>
</table>

Applying the direct technique of meta-analysis to the 2 trials that directly compared FC and FS, the ORs were computed as previously described (allocating FS data as P1 and FC data as P2); clinical and radiographic data for success were analyzed separately. The ORs for the clinical data from the 2 trials were as follows: 1.00 (SE=0.47; 95% CI=0.01-88.10) for the trial by Ibrecevic and Al-Jame; and 2.46 (SE=0.68; 95% CI=1.24-4.89) for the trial by Fuks et al. The clinical data were deemed to be homogeneous (chi-squared value for consistency=0.04, df=1; 0.80<P<0.90). Examination of the clinical data based on total teeth summed from both trials (ie, 35+37=72 teeth treated by FC; 35+55=90 teeth treated by FS) indicated that FS was significantly more successful than FC (common OR=1.95; SE=0.66; 95% CI=1.00-3.80).

The ORs for the radiographic data from the 2 trials were as follows: 1.00 (SE=1.43; 95% CI=0.23-4.20) for the trial by Ibrecevic and Al-Jame; and 1.08 (SE=0.48; 95% CI=0.66-1.76) for the trial by Fuks et al. The clinical data were deemed to be homogeneous (chi-squared value for
consistency=0.003, df=1; \(P > 0.95 \)). Examination of the radiographic data based on total teeth summed from both trials (ie, 35+37=72 teeth treated by FC, and 35+55=90 teeth treated by FS) indicated no significant difference between FS and FC (common OR=0.90; SE=0.43; 95% CI=0.58-1.39).

The L’Abbe plots for the clinical and radiographic data also indicated homogeneity, and particularly for the radiographic data, since the straight line drawn from the origin to the data approximated the 2 data points very closely (Figures 2 and 3).

Application of indirect technique to 13 trials

The number of primary molar teeth studied in the relevant arms of the 13 trials ranged from 15 to 142 (Table 4). The total numbers of teeth compiled from the 13 trials were as follows:

1. 753 teeth treated by FC (radiographic data available for 753 teeth and clinical data for 707 teeth);
2. 90 teeth treated by FS (radiographic and clinical data available for all 90 teeth).

The number of teeth assessed radiographically in each arm of the trials ranged from 15 to 142.

The clinical success rates for treatment with FC or FS in the 13 trials (as shown in the papers) ranged from 55% to 100%, and the radiographic success rates ranged from 54% to 99%. The overall success rates based on the clinical data from the trials were as follows: FC (11 trials)—mean=88.5±14.1%; FS (2 trials)—mean=96.5±4.9% (Table 4). These values did not differ significantly (\(P > 0.10 \)), implying that the 2 medicaments did not differ with statistical significance based on the clinical data. The overall success rates based on the radiographic data from the trials were as follows: FC (13 trials): mean 83.5±15.5%; FS (2 trials): mean 85.5±16.3%. These values did not differ significantly (\(P > 0.50 \)), implying that the 2 medicaments did not differ with statistical significance based on the radiographic data.

Discussion

Evidence-based dentistry is being used increasingly as a tool to synthesize, evaluate, and interpret research to produce clinical guidelines and conclusions. Use of the principles of EBD is particularly relevant in establishing new clinical recommendations for pulpotomy medicaments for primary teeth based on data currently available from the literature.

Since selection of papers to include in the statistical analysis in EBD is based upon defined but arbitrary criteria, bias can occur at several steps in the procedure. Database searches employing computer search engines are limited by the words entered and the Boolean operators

Table 4. Distribution of 13 Papers Examined by Meta-analysis for Clinical and Radiographic Success of Formocresol and Ferric Sulfate (or Ferric Sulphate) as Primary Molar Pulpotomy Medicaments

<table>
<thead>
<tr>
<th>Pulpotomy medicament and paper</th>
<th>Clinical data: no. of primary molars</th>
<th>Clinical data: successful (%)</th>
<th>Radiographic data: no. of primary molars</th>
<th>Radiographic data: successful (%)</th>
<th>Follow-up time period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formocresol:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berger (1965)25</td>
<td>—</td>
<td>—</td>
<td>31</td>
<td>30 (97)</td>
<td>22-263 d</td>
</tr>
<tr>
<td>Redig (1968)26</td>
<td>40</td>
<td>35 (87)</td>
<td>40</td>
<td>35 (87)</td>
<td>18 mos</td>
</tr>
<tr>
<td>Morowa et al (1975)27</td>
<td>125</td>
<td>123 (98)</td>
<td>125</td>
<td>123 (98)</td>
<td>To exfoliation</td>
</tr>
<tr>
<td>Magnusson (1978)28</td>
<td>84</td>
<td>84 (100)</td>
<td>84</td>
<td>45 (54)</td>
<td>36 mos</td>
</tr>
<tr>
<td>Mejare (1979)29</td>
<td>74</td>
<td>41 (55)</td>
<td>74</td>
<td>41 (55)</td>
<td>2.5 yrs</td>
</tr>
<tr>
<td>Alacam (1989)30</td>
<td>23</td>
<td>21 (91)</td>
<td>23</td>
<td>19 (83)</td>
<td>12 mos</td>
</tr>
<tr>
<td>Roberts (1990)31</td>
<td>142</td>
<td>141 (99)</td>
<td>142</td>
<td>141 (99)</td>
<td>2.5 yrs</td>
</tr>
<tr>
<td>Fuks et al (1997)32</td>
<td>37</td>
<td>31 (84)</td>
<td>37</td>
<td>27 (72)</td>
<td>35 mos</td>
</tr>
<tr>
<td>Farooq et al (2000)33</td>
<td>78</td>
<td>58 (74)</td>
<td>78</td>
<td>58 (74)</td>
<td>23 mos</td>
</tr>
<tr>
<td>Ibrecevic and Al-Jame (2000)34</td>
<td>35</td>
<td>35 (100)</td>
<td>35</td>
<td>34 (97)</td>
<td>20 mos</td>
</tr>
<tr>
<td>Waterhouse et al (2000)35</td>
<td>44</td>
<td>37 (84)</td>
<td>44</td>
<td>37 (84)</td>
<td>To exfoliation</td>
</tr>
<tr>
<td>Dean et al (2002)37</td>
<td>25</td>
<td>25 (100)</td>
<td>25</td>
<td>23 (92)</td>
<td>11.5 mos</td>
</tr>
<tr>
<td>Total teeth (753):</td>
<td>707</td>
<td>631 (89)</td>
<td>753</td>
<td>627 (84)</td>
<td></td>
</tr>
<tr>
<td>Ferric sulfate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuks et al (1997)32</td>
<td>55</td>
<td>51 (93)</td>
<td>55</td>
<td>41 (74)</td>
<td>35 mos</td>
</tr>
<tr>
<td>Ibrecevic and Al-Jame (2000)34</td>
<td>35</td>
<td>35 (100)</td>
<td>35</td>
<td>34 (97)</td>
<td>20 mos</td>
</tr>
<tr>
<td>Total teeth (90)</td>
<td>90</td>
<td>86 (97)</td>
<td>90</td>
<td>75 (86)</td>
<td></td>
</tr>
</tbody>
</table>
used. Therefore, it is possible that some important and relevant papers are not retrieved. For example, indexing in Medline Ovid Library commenced in 1966. While this commencement date would not have hindered the retrieval of FS citations, it could have limited the retrieval of FC citations.

In addition, gray papers cannot be included if they are not available via manual searching, computer databases, or accessible library holdings. Since preliminary sieving excludes papers based on titles only, titles not correctly reflecting paper content will lead to inadvertent exclusions. Similarly, in secondary sieving, vague titles or very brief abstracts could lead to incorrect classification of papers. Such biased information could well influence an EBD study’s final conclusions.

A rating system modified from that of Chalmers et al was used originally in the present study to assess quality of the clinical trials, emphasizing sample size and endpoints. Rating systems can assist in excluding papers of lesser quality, or can be used in meta-analysis to increase statistical power. Since a total of only 13 papers were available at the end of the appraisal and ranking process in the present study, however, papers of lesser quality were not excluded and rating scores were not incorporated into the meta-analysis. The decision to not use a rating system could decrease the strength of evidence supporting a given conclusion.

Clinical and radiographic data from the indirect technique and radiographic data from the direct technique, showed no significant difference between FS and FC, although FS trended towards higher clinical success. It cannot be concluded, however, that FS is a better pulpotomy medicament for several reasons, as follows. Only 2 trials were included in the direct technique, indicating low statistical power and possible skewing, as outlying data may not be detected by homogeneity tests. Meta-analysis typically uses a pooled P value obtained from several trials, which determines the strength of the analysis.

In the present study, the P values observed exceeded .05, suggesting inadequate evidence to conclude that FS is more successful than FC. Secondly, publication bias was not considered in the present study. Noting that the lower 95% CI for the OR is close to 1, only a few unpublished trials would be needed to make the result statistically insignificant.

In the present study, 1 randomized clinical trial and 1 clinical trial were meta-analyzed by the direct technique. It has been demonstrated that nonrandomized trials could have an effect exaggerated by up to 40%. Exaggeration of results from randomized clinical trials is also possible because of deficient examiner blinding, which was not specified in the trial analyzed in the present study. In addition, the follow-up time periods differed between the 2 trials (20 months vs 35 months). Further long-term randomized and controlled clinical trials are required to confirm the present findings.

The indirect technique has low statistical power in comparison with the direct technique, since there is usually little correlation of variables between studies. In the direct technique, correlation of confounding variables is eliminated because trials compare relative successes of treatments under similar criteria for inclusion, pretreatment status, follow-up, etc. This does not occur in the indirect technique, due to the pooling of studies of differing designs.

In deriving recommendations from meta-analyses, it is noted that odds ratios cannot indicate how much better one material is over another, nor the size of the effect or the clinical significance. The present study indicates that, based on clinical and radiographic data, similar success of a primary molar pulpotomy can be expected with either
This agrees with a recent brief EBD report on this subject by Nadin et al who stated that “there is no reliable evidence supporting the superiority of one particular treatment method for pulpally involved primary molars.”

Further prospective RCTs should be conducted on this clinical procedure.

Conclusions

Based on available information at present, this evidence-based assessment concludes that, in human carious primary molars with reversible coronal pulpitis, a pulpotomy performed with either ferric sulphate or formocresol is likely to have a similar clinical and radiographic success.

References

The purpose of this study was to evaluate the long-term effects of chin-cap therapy on temporomandibular disorder (TMD) symptoms. The treatment group consisted of 32 individuals with Class III malocclusions who were treated with chin-cap therapy for an average of 1.8 years. Two control groups consisted of: (1) 39 untreated individuals with skeletal Class III malocclusion; and (2) 53 dental students with normal occlusion. Subjects were classified as symptomatic if one positive sign or symptom was found upon examination. The distribution of symptomatic subjects was higher in the normal occlusion group than the treated and untreated Class III groups. The pain occurrence was significantly higher in the normal occlusion group than the treated Class III group. The main conclusion is that chin-cap therapy is not a risk factor for TMD.

Comments: The normal occlusion group consisted of dental students whose mean age was 19.2 years (range=18-21.4 years), while the treatment group had a mean age of 18.4 years (range=13.9-22.5 years). The dental students tended to be older and to likely have a more stressful lifestyle. As stress has been shown to be a significant risk factor for TMD, the authors could have selected a more suitable normal occlusion control group. LDK

Address correspondence to Professor Mirzen Arat, Ankara Universitesi, Dis Hekimligi Fakultesi, Ortodonti AD, Besevler, Ankara 06500, Turkey.

43 references