The composition of subgingival microflora in two groups of children with and without primary dentition alveolar bone loss

Enrique Bimstein, CD Diana Ram, Dr Odont Ronit Naor Michael N. Sela, DMD, PhD

Abstract

The is study examined the relationships between the microbial composition of the subgingival plaque, contact loss caused by caries and alveolar bone loss (ABL) in primary molars. The study included 10 children with contact loss in at least two sites, one with ABL and one without ABL, and 10 children without ABL with sites with or without contact loss. The microbial composition of subgingival plaque was examined by dark-field microscopy and by cultures of total anaerobic bacteria, Actinobacillus actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg). Dark-field microscopy confirmed that spirochetes and motile rods may be part of the indigenous flora of the oral cavity. More spirochetes and motile rods were observed in sites with ABL than in control sites in the same subject and control subjects without ABL. Lower numbers of cocci were seen in sites with ABL than in control sites in the same subject and control subjects without ABL. A significant difference was not observed between sites with ABL and healthy sites within the same subjects. No significant differences in the dark-field values were evident in sites without ABL, with or without contact loss. Aa and Pg were found in children and sites with or without ABL. In sites with Aa, larger proportions of spirochetes, lower values of cocci, and more colonies of Pg were evident. No significant differences in anaerobic bacteria were evident between sites with or without contact loss or with or without ABL. ABL in the primary dentition was found to be related to the microbial composition of the subgingival plaque, but not related to contact loss per se. (Pediatr Dent 18:42-47, 1996)

The possible relationship between alveolar bone loss (ABL) in childhood and adulthood in the same individual has emphasized the need to study the etiology of ABL in children. 1-3 In addition, marginal ABL in the primary dentition adjacent to extensive proximal caries, which facilitates food impaction and plaque accumulation, has been described in several studies. 4-6 The facts that marginal ABL does not take place in every child with extensive proximal caries, and that in children affected with ABL the defect tends to appear in more than one site, suggest that some children may have an increased susceptibility to marginal ABL. 4-6 Identifying susceptible children, as well as the factors that make them more susceptible to ABL, may lead to preventive measures directed at reducing the deleterious effect of modifiable risk factors, such as the bacterial composition of the subgingival dental plaque and host-related factors. 3, 9-12 The purpose of this study was to assess, in the primary molar area, the relationships between the microbial composition of the subgingival plaque, contact loss caused by caries, and alveolar bone loss.

Methods and materials

Following approval by the institution's Helsinki Committee, this study was conducted at the Pediatric Dentistry Clinic of the Hebrew University — Hadassah School of Dental Medicine. Children who had no systemic diseases, had not received antibiotic treatment for at least 2 months, and had good quality bite-wing radiographs were considered as potential subjects for the study. Good quality radiographs were determined as having 1) minimal or no distortion, 2) minimal or no overlapping between the proximal surfaces of the primary molars, and 3) a clear image of the alveolar bone area.

The first 20 children who fit the following groups (10 in each group) were included in the study:

Group A: Children with contact loss due to proximal caries between the primary molars, with at least one site with ABL and one site without ABL.

Group B: Children with no ABL, and with sites with or without contact loss due to proximal caries.

The alveolar bone was considered normal when the distance from the cementoenamel junction to the alveolar bone crest (CEJ-ABC distance) was ≤ 2 mm and/or the lamina dura was complete. Marginal ABL was defined when the CEJ-ABC distance was > 2 mm and there was clear evidence of the lamina dura being com-
Fig 1. Bite-wing radiograph in which alveolar bone loss is evident between the lower primary molars with contact loss due to caries.

The CEJ-ABC measurements were performed on the bite-wing radiographs using a light box and an optical device (Loupe x10) composed of a magnifying glass and a micro-ruler. The device allowed for measurements in 0.1-mm increments.

Subject collection was done within 8 weeks. The sites with contact loss were not yet restored at the time of the subgingival plaque sampling. Two samples of the subgingival plaque were obtained from each child in group A, one from a site with ABL (subgroup A-1) and the other from a site without ABL (subgroup A-2). In group B, an attempt was made to obtain an equal number of samples with or without contact loss from each child. However, due to the distribution and severity of caries, seven samples were obtained from sites with contact loss (subgroup B-1) and 13 from sites without contact loss (subgroup B-2).

For the microbial examination, supragingival plaque was removed and the teeth carefully dried. Three sterile paper points then were inserted for 10 sec to the base of the sulcus or pocket, removed, and immediately inserted into a vial containing 0.3 ml of reduced transfer fluid (RTF). The samples were vortexed for 60 sec and then serially diluted in RTF (1:100, 1:200).

For dark-field microscopy, 30 μl of the sample was taken and diluted 1:1 with sterile saline with 2% gelatin. The following microorganisms were counted and their percentages from a total of 100 were calculated: filaments, cocci, rods, spirochetes, and motile rods. The total percentages for nonpathogenic-related (filaments, rods, and cocci) and pathogenic-related microorganisms (spirochetes and motile rods) also were calculated.14-17

Samples from each dilution were plated by means of an automatic spiral platter on:

1. Enriched trypticase soy agar (ETSA) for the total anaerobic count.
2. Trypticase soy bacitracin vancomycin (TSBV) for A. actinomycetemcomitans (Aa).

Only catalase-positive bacteria with the specific typical star-shaped colony were counted as Aa.

3. Bacteroides gingivalis agar (BGA) for Porphyromonas gingivalis (Pg).

Plates from each sample then were incubated to assess the anaerobic organisms in a Coy anaerobic chamber (Coy Laboratory Products, Ann Arbor, MI) for 7 days in an atmosphere of N₂, H₂, and CO₂ at 37°C.

Following incubation, the total number of colony forming units (CFU) was identified and counted by means of colony morphology. The mean value for two plates per site for each type of bacteria and their proportions from the total anaerobic counts were calculated.

Statistical analysis

The student's t-test was utilized to examine the significance of the difference in: age between groups A and B; CFU and dark-field values for sites with or without Aa and with or without Pg with or without marginal ABL. Analysis of variance (ANOVA) was utilized to examine the significance of the differences in CEJ-ABC distances, dark-field microscopy, and CFU values between groups A and B and among the four subgroups. The Fischer PLSD was used to evaluate the statistical significance of the differences between pairs of subgroups. A standard computer program for statistical analysis was utilized for the statistical examination (StatView™ SE+Graphics, Abacus Concepts, Inc, Berkeley, CA). Differences at the 5% level of probability were considered statistically significant.

Results

The children's ages ranged from 6 to 10 years. No statistically significant difference in age was found between group A and group B (n = 10, mean = 8.1 years, SD = 1.3 and n = 10, mean 7.5 years, SD = 1.0, respectively).

The overall differences between the CEJ-ABC distances of the four subgroups were statistically significant (ANOVA, P = 0.0001). Significant larger CEJ-ABC distances were evident in the sites with ABL (subgroup A-1) than in all the other subgroups (Fisher PLSD P < 0.05). Among the children without ABL (group B), larger but not statistically significant CEJ-ABC distances were found in sites with contact loss (subgroup

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup/Sites</th>
<th>n*</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1- with ABL</td>
<td>10</td>
<td>2.7</td>
<td>0.3</td>
</tr>
<tr>
<td>A</td>
<td>2- without ABL</td>
<td>10</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>1- with contact loss</td>
<td>7</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>B</td>
<td>2- without contact loss</td>
<td>13</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* Number of sites.
Table 2. Mean Proportions of Bacterial Morphologies Obtained with Darkfield Microscopy

<table>
<thead>
<tr>
<th>Group</th>
<th>Filaments</th>
<th>Cocci</th>
<th>Rods</th>
<th>Spirochaetes</th>
<th>Motile Rods</th>
<th>Nonpathogenic</th>
<th>Pathogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>SD</td>
<td>SD</td>
</tr>
<tr>
<td>A All</td>
<td>18.7</td>
<td>11.3</td>
<td>33.0</td>
<td>17.9</td>
<td>3.2</td>
<td>9.0</td>
<td>4.1</td>
</tr>
<tr>
<td>B All</td>
<td>17.5</td>
<td>6.7</td>
<td>48.6</td>
<td>14.7</td>
<td>6.8</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>P*</td>
<td>NS</td>
<td>0.006</td>
<td>NS</td>
<td>0.04</td>
<td>0.0001</td>
<td>0.009</td>
<td>0.006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Filaments</th>
<th>Cocci</th>
<th>Rods</th>
<th>Spirochaetes</th>
<th>Motile Rods</th>
<th>Nonpathogenic</th>
<th>Pathogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>SD</td>
<td>SD</td>
</tr>
<tr>
<td>A1</td>
<td>14.4</td>
<td>8.3</td>
<td>30.0</td>
<td>15.0</td>
<td>20.7</td>
<td>11.8</td>
<td>26.2</td>
</tr>
<tr>
<td>A2</td>
<td>15.8</td>
<td>6.7</td>
<td>49.7</td>
<td>11.7</td>
<td>24.7</td>
<td>9.4</td>
<td>16.3</td>
</tr>
<tr>
<td>B1</td>
<td>18.4</td>
<td>6.7</td>
<td>47.9</td>
<td>16.5</td>
<td>23.5</td>
<td>12.5</td>
<td>29.0</td>
</tr>
<tr>
<td>B2</td>
<td>15.8</td>
<td>6.7</td>
<td>49.7</td>
<td>11.7</td>
<td>24.7</td>
<td>9.4</td>
<td>16.3</td>
</tr>
<tr>
<td>P*</td>
<td>NS</td>
<td>0.04</td>
<td>NS</td>
<td>0.02</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

* ANOVA.

B-1) than in those without contact loss (subgroup B-2; Table 1).

Dark-field microscopy

Eighteen samples from nine children in group A (two samples from one child were damaged during processing) and 20 samples from 10 children in group B were examined.

All the examined bacteria were evident in the subgingival plaque of all children of group A. Among the group B children, spirochetes were not found in one child and motile rods were not found in four children.

Comparison of the mean proportions of bacterial morphologies between children in groups A and B and the children in the four subgroups (Table 2) indicated that group A had significantly lower mean proportions of cocci and the sum of nonpathogenic microorganisms (filaments, cocci, and rods), and significantly higher proportions of spirochetes, motile rods, and the sum of pathogenic microorganisms (spirochetes and motile rods).

ANOVA of the proportions of the different bacterial morphologies composing the subgingival plaque in the four subgroups (Table 2) indicated that the overall differences between the four subgroups were significant for cocci, spirochetes motile rods, and for the sums of nonpathogenic and pathogenic microorganisms. Analyses of the significance of the differences between pairs of subgroups (Fisher PLSD) revealed the following significant differences:

1. Among children with bone loss (group A), a lower proportion of filaments in sites with bone loss (subgroup A-1) than in sites without bone loss (subgroup A-2)
2. A lower proportion of cocci in sites with ABL (subgroup A-1) than in both subgroups of the children without bone loss (subgroups B-1 and B-2)
3. Higher proportions of spirochetes, motile rods, and sum of pathogenic microorganisms in subgroup A-1 than in subgroups A-2, B-1, and B-2
4. A lower proportion of the sum of nonpathogenic microorganisms in subgroup A-1 than in subgroups A-2, B-1, and B-2

Bacterial cultures

Total anaerobic bacteria

CFU of anaerobic bacteria were obtained from the plaque of all sites. No statistically significant differences were found between the mean total CFU values between the sites from group A (n = 20, mean = 2.78 x 10^6; SD = 4.3 x 10^6) and group B (n = 20, mean = 1.32 x 10^6; SD = 1.17 x 10^6), or among the four subgroups (Table 3).

Actinobacillus actinomycetemcomitans

CFU of Aa were obtained from the subgingival plaque from five sites of four children in group A (n = 5, mean proportion = 2.7%, SD = 2.3%) and from three sites of two children in group B (n = 3, mean proportion = 2.6%, SD = 4.2%). Due to the small number of sites from which Aa was obtained, no statistical analysis was done to analyze the differences among the groups/subgroups.

Comparison of the proportions of CFU of Pg and
dark-field values between sites with and without Aa:

1. A higher proportion of CFU of \(Pg\) (mean = 6.6%, SD = 11.2%, and mean = 1.9%, SD = 0.3%, respectively; \(P = 0.01\))
2. Smaller proportions of cocci (mean = 30.0%, SD = 14.9%, and mean 44.1%, SD = 17.6% respectively; \(P = 0.02)\)
3. A higher proportion of spirochetes (mean = 11.7%, SD = 8.8%, and mean = 6.9%, SD = 6.8%, respectively; \(P = 0.05\)).

Table 4. Mean proportions of CFU of \(P.\) gingivalis in children with (A) and without (B) alveolar bone loss

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup/Sites</th>
<th>(n)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 = w/ABL</td>
<td>10</td>
<td>1.8</td>
<td>2.9</td>
</tr>
<tr>
<td>A</td>
<td>2 = w/out ABL</td>
<td>10</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1 = w/contact loss</td>
<td>7</td>
<td>9.0</td>
<td>11.0</td>
</tr>
<tr>
<td>B</td>
<td>2 = w/out contact loss</td>
<td>13</td>
<td>1.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* Number of sites.

Porphyromonas gingivalis

CFU of \(Pg\) were identified in the subgingival plaque of all 10 children of group A (18 sites) and in the plaque of seven children in group B (13 sites). The proportions of CFU of \(Pg\) from the CFU of total anaerobic bacteria are presented in Table 4. ANOVA revealed that the overall differences between the four subgroups were significant, and that subgroup B-1 had a significantly higher proportion of \(Pg\) than the other three subgroups. It should be noted, however, that these differences were the result of extremely high proportions of \(Pg\) in two sites with contact loss (15.9% and 30.9%) in only one child.

Comparison of the proportions of Aa and dark-field values between sites with and without \(Pg\) did not reveal any statistically significant differences.

Discussion

The diagnosis of ABL in children and adolescents is done mostly by radiographic examination.\cite{4-8, 22-24} One should take into consideration, however, that radiographic evidence of widening of the periodontal ligament space, alveolar bone density, or an increase in the CEJ-ABC distances in the primary dentition, do not necessarily identify periodontitis.\cite{25-28} On the other hand, a recent study indicated that radiographic evidence of a complete lack of lamina dura is indicative of ABL between the primary molars.\cite{29} Accordingly, marginal ABL was recorded in this study only in sites with clear evidence of complete loss of the lamina dura, in addition to having a CEJ-ABC distance of > 2 mm.

Since bacteria and/or their products are the main etiologic factors of periodontal diseases,\cite{8, 12} we examined the possible connection among the microbial composition of subgingival plaque, contact loss, and marginal ABL. Since the microbial composition of the subgingival plaque may change with age, the similarity in age between the children in groups A and B allowed for comparison between the groups.

Our finding that most of the children — regardless of the presence/absence of ABL — had spirochetes and motile rods in their subgingival plaque, supports previous findings that indicate that these microorganisms are part of the indigenous flora of the oral cavity.\cite{14, 30} Moreover, the increased percentages of spirochetes and motile rods in sites with ABL and the accordant higher percentages of cocci and rods in sites without ABL, support previous findings that related the presence of spirochetes and motile rods to gingivitis and periodontitis, and describe nonmotile bacteria as “healthy flora.”\cite{14-17}

Comparison of the present dark-field values for the children without ABL (48.6% cocci, 17.5% filaments, and 24.0% rods) with those of a previous study on teenagers with a mostly healthy periodontium (89.4% cocci, 4.5% rods, and 0.6% filaments)\cite{37} reveals that in both studies the nonpathogenic component of the subgingival plaque was > 90%. The differences in the proportions of cocci, rods, and filaments between the studies may be due to population characteristics.

Interesting was the finding that in group B, no significant differences in dark-field values were evident in sites with or without contact loss. This finding suggests that contact loss per se does not facilitate ABL development, and that the presence of specific periodontopathogens and or host-related factors also are required for ABL development.

Aa and Pg, have been related to destructive periodontal disease, may colonize sites without clinical loss of periodontal attachment, and may be transmitted among family members.\cite{32, 34-36} Our finding that Aa was found in children without ABL, is consistent with previous studies, which indicate that Aa may be found in individuals with no destructive periodontal disease.\cite{30, 32, 34-36} In a previous study, the dark-field microscopic data of Aa-positive subjects were similar to those of the Aa-negative subjects. In this study however, where the data were examined by site and not by subject, higher percentages of spirochetes and lower percentages of cocci were found in sites with Aa than in those without it.

In a previous study, in which the bacterial composition of subgingival plaque from children with ABL was examined, Aa was identified in most of the affected sites. In this study however, Aa was identified only in three children of group A and two children in group B. The lower prevalence of Aa found in this study probably is related to the more accurate bacterial identification techniques utilized.

Pg has been described to be the most pathogenic and virulent of the black-pigmented Bacteroides species, which is rarely isolated from healthy young children and adolescents, and that is a major component of the subgingival flora in children with early-onset periodontal...
titis. On the other hand, detection methods such as DNA-probes and ELISA indicate that antibodies to Pg occur at low levels in most normal children and that Pg may be present in a significant part of the population below culture detection levels. Therefore, it is possible that subgingival bacterial colonization of Pg during childhood and its transmission between family members is more prevalent than actually believed. The high prevalence of Pg found in this study among children with or without ABL may be due to the use of different selective media, and/or to population characteristics. In general, despite identification of Aa and Pg based on the use of selective media and colony shape utilized in several studies, one should consider superiority of DNA probes, which provide more accurate bacterial identification.

While our finding does not directly relate Aa or Pg to marginal ABL, there is still the possibility that Aa or Pg may flourish in neglected, marginal ABL lesions. Furthermore, one should take into consideration that the presence of Aa or Pg in healthy individuals may indicate a carrier state in a resistant individual, a factor that is important due to the possible transmission of Aa or Pg among individuals.

It has been stated that cross-sectional data, such as those presented in this study may have a limited value as predictor of future disease activity. However, these data still may be useful to better understand the etiology and progression of ABL in the primary dentition.

Conclusions

1. Spirochetes and motile rods may be part of the indigenous flora of the oral cavity in children. However, their proportions are significantly higher in the subgingival plaque of sites/children with ABL than in sites/children without ABL.

2. In sites where A. actinomycetemcomitans was found, higher proportions of spirochetes, lower proportions of cocci, and more CFU of P. gingivalis were obtained.

3. Both A. actinomycetemcomitans and P. gingivalis were found in sites/children without marginal ABL and could not be related to marginal ABL.

Dr. Bimstein is Professor, Department of Dentistry; Dr. Ram is Instructor, Department of Pediatric Dentistry; Ronit Naor is Laboratory Technician, Department of Oral Biology, and Dr. Sela is Chairman, Department of Oral Biology, Hadassah Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.

4. Bimstein E, Delaney JE, Sweeney E: Radiographic assess-

Pediatric Dentistry is on the Web!

Visit the American Academy of Pediatric Dentistry’s new web site at http://aapd.org to preview the abstracts of articles accepted for publication in *Pediatric Dentistry* months before they are published in the printed format. Abstracts will be online as soon as manuscripts are accepted and will include the date accepted and a target date for publication in the journal.

By using world wide web browser software, readers, authors and advertisers can access other journal information immediately, including:

- Instructions for contributors
- Advertising rates and deadlines
- Subscription forms
- Reference Manual passages

Also on the AAPD site are content areas for members, parents, and the media; helpful tips and free, downloadable software to help you best access our site; and links to hundreds of other sites including other dental and health care organizations and academic, federal, and regulatory institutions.

Not on the Web? A demo of AAPD’s web site will be available at the 49th Annual Session in Chicago May 24–28. Also, 3-hour course on May 28 will show beginners why they want to get on the World Wide Web and how to get there.